
 
 

 
 
 
 
 
 
 
 
 
 
 

Visual Basic 
 
 
 
 
 
 
 
 
 
 
 
 
 

Autor: 
Ronaldo Almada 



VB6 - Cadastro de Clientes completo com ADO 

 

Esta começando agora com o Visual Basic e quer um exemplo completo de uma aplicação que faz 
acesso a banco de dados e realiza as operações para incluir , alterar , excluir , pesquisar e ainda 

que emita um relatório ???  

Pois você chegou ao lugar certo pois neste artigo eu apresento uma aplicação para cadastro de 
clientes feita no Visual Basic versão 6 com acesso a um banco de dados Access usando ADO e com 

relatório feito no Data Report.  

A tela principal do sistema é vista a seguir: 

 

O programa usa uma rotina sub main() para verificar se já existe uma instância da aplicação em 
execução, neste caso a mesma será encerrada. 

Em seguida é obtido o caminho do banco de dados Clientes.mdb ( você pode definir o caminho no 
arquivo config.ini) e feita a abertura da base de dados que usa a senha MasterDB. 

Sub Main() 
 
Dim Caminho As String 
 
If App.PrevInstance = True Then 
   Dim Form As Form 
   For Each Form In Forms 
      MsgBox "O Sistema já foi Iniciado", vbInformation, "" 
      Unload Form 
      Set Form = Nothing 
   Next Form 
   End 
End If 
 
'Caminho = ReadINI("Caminho", "BD", App.Path & "\Config.ini") 
Caminho = App.Path & "\Clientes.mdb" 
 
On Error GoTo Finalizar 
 
    cnSQL.Open "Provider = Microsoft.Jet.OLEDB.4.0;Data Source =" & Caminho & ";Jet OLEDB:database 
Password=MasterDB" 
     



 
    frmCadClientes.Show 
 
Exit Sub 
 
Finalizar: 
MsgBox "Erro Conectando-se ao Banco de Dados.", vbCritical, "Erro" 
 
End Sub 

O formulário de pesquisa de registros na tabela do banco de dados é mostrado abaixo: 

 

Ele é usado para localizar os registros nas operações de alteração e exclusão de dados e foi criado 
usando um controle MSFlexGrid que é preenchido pela rotina MontarLista(): 

rivate Sub MontarLista() 
   
Dim RS As New ADODB.Recordset 
Dim SQL As String 
Dim Criterio As String 
 
grdPesquisa.TextMatrix(0, 0) = "CodCliente" 
grdPesquisa.TextMatrix(0, 1) = "Telefone" 
grdPesquisa.TextMatrix(0, 2) = "Nome" 
 
Criterio = Chr$(39) & txtDadosPesquisa & "%" & Chr(39) 
 
SQL = "SELECT CodCliente, Telefone, Nome FROM CadCliente WHERE CadCliente.Nome Like " & Criterio & " ORDER BY 
Nome" 
 
On Error Resume Next 
 
With RS 
 
.Open SQL, cnSQL, adOpenForwardOnly, adLockReadOnly 
 
  If .EOF Then 
     
    MsgBox "Registro não encontrado", vbExclamation, "Atenção" 
   
    Limpa 
    grdPesquisa.TextMatrix(1, 0) = "" 
    grdPesquisa.TextMatrix(1, 1) = "" 
    grdPesquisa.TextMatrix(1, 2) = "" 
   
  Else 



     
 Limpa 
  
    Do Until .EOF 
   
     grdPesquisa.AddItem RS(0) & vbTab & RS(1) & vbTab & RS(2) 
       
      .MoveNext 
    Loop 
     
    grdPesquisa.RemoveItem 1 
   
  End If 
 
.Close 
 
End With 
 
End Sub 

A rotina usada para gravar as alterações e a inclusão de um novo registro é a seguinte: 

Private Sub GravaDados() 
 
Dim adCmdPaciente As New ADODB.Command 
Dim CodCliente As Long 
Dim Resp As Byte 
 
If Not TudoOK Then Exit Sub 
 
Resp = MsgBox("Confirma Gravação de " & txtNome & " em Cadastro de Cliente ?", vbYesNo + vbQuestion, "Salvar 
Dados") 
 
If Resp = 7 Then Exit Sub 
 
'On Error Resume Next 
 
CodCliente = Val(txtCodCliente.Text) 
     
With adCmdPaciente 
 
    Set .ActiveConnection = cnSQL 
    .CommandType = adCmdText 
    .Prepared = True 
     
    If CodCliente > 0 Then 
     
        .CommandText = "UPDATE CadCliente set Nome = ?, Endereco = ?, Bairro = ?, Cidade = ?, Estado = ?, Cep = ?, 
Telefone = ?, Obs = ?, DataCad = ? Where _ 
 CodCliente = " & CodCliente 
         
        .Parameters.Append .CreateParameter("Nome", adVarChar, adParamInput, 30) 
        .Parameters.Append .CreateParameter("Endereco", adVarChar, adParamInput, 30) 
        .Parameters.Append .CreateParameter("Bairro", adVarChar, adParamInput, 20) 
        .Parameters.Append .CreateParameter("Cidade", adVarChar, adParamInput, 20) 
        .Parameters.Append .CreateParameter("Estado", adVarChar, adParamInput, 2) 
        .Parameters.Append .CreateParameter("Cep", adVarChar, adParamInput, 9) 
        .Parameters.Append .CreateParameter("Telefone", adVarChar, adParamInput, 9) 
        .Parameters.Append .CreateParameter("Obs", adVarChar, adParamInput, 255) 
        .Parameters.Append .CreateParameter("DataCad", adDate, adParamInput) 
         
        .Parameters("Nome") = txtNome.Text 
        .Parameters("Endereco") = txtEndereco.Text 
        .Parameters("Bairro") = txtBairro.Text 
        .Parameters("Cidade") = txtCidade.Text 
        .Parameters("Estado") = cboEstado.Text 



        .Parameters("Cep") = txtCep.Text 
        .Parameters("Telefone") = txtTelefone.Text 
        .Parameters("Obs") = txtObs.Text 
        .Parameters("DataCad") = Date 
         
        .Execute 
         
        If Err.Number <> 0 Then 
        MostraErro 
        End If 
         
    Else 
     
        .CommandText = "INSERT INTO CadCliente (Nome, Endereco, Bairro, Cidade, Estado, Cep, Telefone, Obs, 
DataCad) Values (?, ?, ?, ?, ?, ?, ?, ?, ?)" 
         
        .Parameters.Append .CreateParameter("Nome", adVarChar, adParamInput, 30) 
        .Parameters.Append .CreateParameter("Endereco", adVarChar, adParamInput, 30) 
        .Parameters.Append .CreateParameter("Bairro", adVarChar, adParamInput, 20) 
        .Parameters.Append .CreateParameter("Cidade", adVarChar, adParamInput, 20) 
        .Parameters.Append .CreateParameter("Estado", adVarChar, adParamInput, 2) 
        .Parameters.Append .CreateParameter("Cep", adVarChar, adParamInput, 9) 
        .Parameters.Append .CreateParameter("Telefone", adVarChar, adParamInput, 9) 
        .Parameters.Append .CreateParameter("Obs", adVarChar, adParamInput, 255) 
        .Parameters.Append .CreateParameter("DataCad", adDate, adParamInput) 
         
        .Parameters("Nome") = txtNome.Text 
        .Parameters("Endereco") = txtEndereco.Text 
        .Parameters("Bairro") = txtBairro.Text 
        .Parameters("Cidade") = txtCidade.Text 
        .Parameters("Estado") = cboEstado.Text 
        .Parameters("Cep") = txtCep.Text 
        .Parameters("Telefone") = txtTelefone.Text 
        .Parameters("Obs") = txtObs.Text 
        .Parameters("DataCad") = Date 
         
        .Execute 
         
     If Err.Number <> 0 Then 
        MostraErro 
        End If 
    End If 
     
 
                   
End With 
         
    Set adCmdPaciente = Nothing 
    cmdNovo_Click 
     
End Sub 
 
Public Sub MostraDadosCliente() 
   
  Dim rsPaciente As New ADODB.Recordset 
  Dim SQL As String 
  Dim CodCliente As Long 
   
  CodCliente = Val(txtCodCliente.Text) 
   
  On Error Resume Next 
   
  SQL = "SELECT Nome, Endereco, Bairro, Cidade, Estado, Cep, Telefone, Obs From CadCliente Where CodCliente=" & 
CodCliente 
   
  rsPaciente.Open SQL, cnSQL, adOpenForwardOnly, adLockReadOnly 
   



  txtNome = rsPaciente(0) 
  txtEndereco = rsPaciente(1) 
  txtBairro = rsPaciente(2) 
  txtCidade = rsPaciente(3) 
  cboEstado = rsPaciente(4) 
  txtCep = rsPaciente(5) 
  txtTelefone = rsPaciente(6) 
  txtObs = rsPaciente(7) 
   
rsPaciente.Close 
 
End Sub 

Perceba que foram usadas instruções SQL para atualizar (UPDATE) e para incluir um novo cliente 
(INSERT INTO) com a utilização de parâmetros  

UPDATE CadCliente set Nome = ?, Endereco = ?, Bairro = ?, Cidade = ?, Estado = ?, Cep = ?, Telefone 
= ?, Obs = ?, DataCad = ? Where _ 
CodCliente = " & CodCliente 

INSERT INTO CadCliente (Nome, Endereco, Bairro, Cidade, Estado, Cep, Telefone, Obs, DataCad) 
Values (?, ?, ?, ?, ?, ?, ?, ?, ?)" 

O formulário para exibir o relatório permite a seleção entre um intervalo de datas: 

 

O código para a seleção é dado a seguir: 

Private Sub cmdOK_Click() 
 
Dim DataInicial As String 
Dim DataFinal As String 
 
DataInicial = Format(actDataInicial.Value, "mm/dd/yyyy") 
DataFinal = Format(actDataFinal.Value, "mm/dd/yyyy") 
 
dteRelatorio.cmdClientes_Data DataIncial, DataFinal 
Unload Me 
dtrClientes.Show 1 
 
End Sub 

O relatório da aplicação feita no Data Report tem o seguinte leiaute: 



Na verdade uma aplicação simples mas que ensina os passos básicos para conexão e manutenção de 
dados usando ADO. Além disso o sistema possui diversas rotinas interessantes para você estudar. 

Referências: 

• VB6 -  Preenchendo o MSFlexGrid mais rápido 
• VB - Busca Dinâmica com MSFlexgrid 
• VB - Editando  dados diretamente no MSFlexGrid  
• VB - Carregando dados em um MSFlexGrid e DataGrid  
• VB - Operações com Matrizes 
• VB6 - DataGrid, MSFlexGrid e alguns conceitos básicos 
• Imprimindo grades MSFlexGrid - A solução 
• MSFlexGrid - Classificando e mesclando dados 
• VB Prático - Tornando o MSFlexGrid Editável  
• VB.6 -  FlashBack : MsFlexGrid preenchendo o controle com dados II  
• A lógica de aplicações em 3 camadas - Parte I 
• A lógica de aplicações em 3 camadas - Parte II 
• A lógica de aplicações em 3 camadas - Parte III 
• A lógica de aplicações em 3 camadas - Parte IV 
• VB6 -  Agenda de Contatos 
• VB6  - Fluxo de Caixa Bancário 
• VB  - ADO - Ponto de Vendas 
• Acesso a banco de dados 

 

 



  VB6 - Preenchendo o MSFLexGrid mais 
rápido  

 

O controle MSFLexGrid é um ótimo controle de GRID para exibir dados em suas aplicações Visual 
Basic 5/6, ele não é perfeito, mas e leve e fácil de configurar via código. Se você costuma usar 
este controle em suas aplicações para exibir dados de tabelas de banco de dados saiba que pode 
ganhar muito em desempenho na hora de preencher o controle. Veja a seguir se você esta fazendo 
o serviço usando o método mais rápido. 

Crie um novo projeto no Visual Basic do tipo Standard EXE e no formulário padrão inclua três 
botões de comando , um controle MSFLexGrid conforme o leiaute abaixo: 

 

O exemplo mostrado efetua o acesso a uma base de dados Access (Teste.mdb), tabela COMUM, 
usando via ADO usando o provedor OLE DB e preenche um controle MSFLexGrid exibindo 6 campos 
da tabela. 

1- Usando o método mais rápido 

No evento Click do botão de comando : Preenchendo via métodos : Rcs.getString() e 
FlexGrid.Clip ,inclua o seguinte código: 

Private Sub Command1_Click() 
 
'define os objetos para o acesso aos dados no Microsoft Access 
Dim db As New ADODB.Connection 
Dim rs As New ADODB.Recordset 
Dim lTimer As Long 
 
Screen.MousePointer = vbHourglass 
Command3_Click 
MSFlexGrid1.Refresh 



lTimer = Timer 
 
MSFlexGrid1.Visible = False 
 
'abre o banco de dados e define o recordset a ser usado 
db.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & App.Path & 
"\Teste.mdb;Persist Security Info=False" 
rs.Open "SELECT * FROM COMUM", db, adOpenStatic, adLockReadOnly 
rs.MoveFirst 
 
'define o numero de linhas e colunas e configura o grid 
MSFlexGrid1.Rows = rs.RecordCount + 1 
MSFlexGrid1.Cols = rs.Fields.Count - 1 
MSFlexGrid1.Row = 0 
MSFlexGrid1.Col = 0 
MSFlexGrid1.RowSel = MSFlexGrid1.Rows - 1 
MSFlexGrid1.ColSel = MSFlexGrid1.Cols - 1 
 
'estamos usando a propriedade Clip e o método GetString para selecionar 
uma região do grid 
MSFlexGrid1.Clip = rs.GetString(adClipString, -1, Chr(9), Chr(13), 
vbNullString) 
MSFlexGrid1.Row = 1 
MSFlexGrid1.Visible = True 
 
'libera os objetos 
Set rs = Nothing 
Set db = Nothing 
 
Screen.MousePointer = vbDefault 
 
MsgBox "Tempo de execução : " & Timer - lTimer & " segs." & vbCr & 
MSFlexGrid1.Rows - 1 & " registros" 
 
End Sub 

Ao preencher o Grid usando este código teremos o seguinte resultado: 



 

1- Usando o método mais lento 

No evento Click do botão de comando : Preenchendo com o método FlexGrid.Additem , inclua o 
seguinte código: 

Private Sub Command2_Click() 
 
'define os objetos para o acesso aos dados no Microsoft Access 
Dim db As New ADODB.Connection 
Dim rcs As New ADODB.Recordset 
Dim lTimer As Long 
 
Screen.MousePointer = vbHourglass 
Command3_Click 
MSFlexGrid1.Refresh 
lTimer = Timer 
 
MSFlexGrid1.Visible = False 
 
'abre o banco de dados e define o recordset a ser usado 
db.Open "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" & App.Path & 
"\Teste.mdb;Persist Security Info=False" 
rcs.Open "SELECT * FROM COMUM", db, adOpenStatic, adLockReadOnly 
rcs.MoveFirst 
 
'define o numero de linhas e colunas e configura o grid 
MSFlexGrid1.Rows = 0 
MSFlexGrid1.Cols = rcs.Fields.Count - 1 
 
Do Until rcs.EOF 
'estamos colectando os campos da tabela COMUM usando a sintaxe: rs(n) onde rs(0) 
refere-se ao primeiro campo e assim por diante 
MSFlexGrid1.AddItem rcs(0) & vbTab & rcs(1) & vbTab & rcs(2) & vbTab & rcs(3) & 
vbTab & rcs(4) & vbTab & rcs(5)  
rcs.MoveNext 



Loop 
MSFlexGrid1.Visible = True 
 
'libera os objetos 
Set rcs = Nothing 
Set db = Nothing 
 
Screen.MousePointer = vbDefault 
 
MsgBox "Tempo de execução : " & Timer - lTimer & " segs." & vbCr & 
MSFlexGrid1.Rows - 1 & " registros" 
 
End Sub 

Ao preencher o grid usando este código iremos obter: 

 

Comparando os tempos obtidos teremos: 

1- Método Mais 
Rápido 

2- Método mais 
Lento 

0,42 segundos 4,5 segundos 

Uma verdadeira eternidade na diferença entre os tempos , não é mesmo ? 

Então avalie o seu caso e veja se é possível otimizar o desempenho usando primeiro método que 
usa a propriedade Clip do MSFlexGrid. Vamos dar uma recapitulada nesta propriedade: 

Clip Property (MSFlexGrid/MSHFlexGrid) 
Retorna ou define o conteúdo das células no controle MSFGrid/MSHFlexGrid da região selecionada. 

Sintaxe: object.Clip [=string] 

Parte Descrição 



object Uma objeto ao qual a propriedade se aplica. 
string Uma expressão String que contém a área selecionada do grid.

• A String pode tratar o conteúdo de múltiplas linhas e colunas; 
• Na String o caractere Tab (Chr(9)) ou a constante vbTab indica uma nova célula na linha; 
• Na String o retorno de carro ,  chr(13) ou a constante vbCR indica o início de uma nova 

linha. (use a função chr ou a as constantes do VB para embutir estes caracteres na string) 

Obs: Ao preencher o MSFLexGrid com dados , somente as células selecionadas são afetadas e se 
houver mais células na região selecionada que as definidas na string , as células restantes serão 
desprezadas. Se houver mais células descritas na string que as células da região selecionada , a 
parte não utilizada será ignorada. 

Nota: Limites de exibição de células nos controles de grid  

Em seu artigo no link http://support.microsoft.com/default.aspx?kbid=191006 a Microsoft informa 
: 

O controle FlexGrid é limitado a exibir 350.000 células total. Essa limitação difere da limitação que 
está documentada na arquivo da Ajuda FlexGrid.  

A Ajuda diz o  seguinte:  " O número mínimo de linhas e colunas é 0. O número máximo é limitado 
pela memória disponível no seu computador. "  

Embora essa declaração é verdadeira para o controle Hierarchical FlexGrid (MSHFLXGD.OCX), ele 
é incorreto para o controle FlexGrid (MSFLXGRD.OCX).  
 
Essa limitação de 350.000 células ocorre em qualquer computador, sem considerar a  memória que 
está disponível. Assim, se você tiver duas colunas, a quantidade máxima de linhas que você pode 
ter é 175.000. Da mesma forma, se você tiver cinco colunas, a quantidade máxima de linhas que 
você pode ter é 70.000.  

No caso do controle  Hierarchical FlexGrid ele sempre exibe um máximo de 2048 linhas sem 
considerar o  número de registros no fonte de dados.  

Para contornar este problema, caso você queira exibir mais de 2048 linhas, você deverá abrir o seu 
conjunto de registros e preencher a grade usando o método GetString de ADO e a propriedade clip 
do MSHFlexGrid. (Conforme exibido no exemplo deste artigo) 

Neste quesito é sempre ter bom senso , pois querer exibir milhares  registros em um grid não é 
lá muito indicado mesmo se você tiver a melhor máquina e muita memória. Para aplicações web 
então eu nem preciso falar que isto é totalmente contra indicado. 

Até breve...  

Pegue o projeto completo para testes aqui:  msflexTeste.zip 

referências: 

http://support.microsoft.com/default.aspx?kbid=191006 
http://support.microsoft.com/kb/194653 

VB - Busca dinâmica com MSFlexgrid 



 

O componente MSFlexGrid é um componente muito versátil ; além de não ser um componente muito 
'pesado' se comparado com outros componentes do tipo grid.  

Neste artigo vou mostrar como podemos realizar uma busca dinâmica exibindo os resultados em um 
controle MSFlexgrid. 

Vamos supor que sua aplicação possua um base de clientes e que você precisa cadastrar alguns destes 
clientes em uma tabela , que eu vou chamar Cadastro.  Os dados já estão em uma tabela chamada 
tblClientes e você só precisa selecionar o cliente desejado para que o mesmo seja salvo na tabela 
Cadastro. (Você pode imaginar muitas outras variantes para esta situação) 

Ambas as tabelas estão no banco de dados Clientes.mdb. 

Neste artigo vou mostrar como você pode criar um formulário para buscar e selecionar clientes de forma 
dinâmica exibindo o resultado em um MSFlexgrid de forma que ao selecionar o cliente da relação o 
mesmo estará apto a ser salvo na tabela Cadastro com um clique de mouse. 

A estrutura das duas tabelas é a seguinte: 

 

Inicie agora mesmo um novo projeto no VS e no formulário padrão inclua os componentes conforme o 
layout a seguir: 

O nome de cada controle esta 
em azul. 

Eu optei por usar o nome 
padrão dos controles , mas 
não aconselho esta prática 
em uma aplicação de 
produção. 

O nome do formulário é : 
frmlocalizaCliente 

  



Temos como critério de busca os campos da tabela tblClientes pelos quais poderemos efetuar a busca 
dinâmica. 

A digitar qualquer caractere em uma das caixas de texto escolhida será efetuada um consulta SQL com 
base no critério informado e o resultado exibido no controle MSFlexgrid. 

Primeiro vamos definir as variáveis usadas no projeto: 

Option Explicit 
 
Dim regContador As Integer 
Dim vCodigo As String 
Dim vNome As String 
Dim vApelido As String 
Dim vEndereco As String 
Dim vTelefone As String 
Dim dataTemp As Date 

Vamos incluir um módulo .bas na nossa aplicação chamado Funcoes.bas que irá conter duas rotinas: 

• Connect - para realizar a conexão com o banco de dados cliente.mdb , que no meu caso esta na 
pasta d:\teste\ 

• Disconnect - para fechar a conexão e limpar os objetos da memória 

Option Explicit 
 
Public CON As ADODB.Connection 
Public RS As ADODB.Recordset 
 
Sub Connect() 
 
Set CON = CreateObject("ADODB.Connection") 
Set RS = CreateObject("ADODB.Recordset") 
CON.Open "Provider = Microsoft.Jet.OLEDB.4.0;Data Source = 
d:\teste\Clientes.mdb" 
RS.CursorLocation = adUseClient 
 
End Sub 
Sub Disconnect() 
RS.Close 
CON.Close 
 
Set RS = Nothing 
Set CON = Nothing 
 
End Sub 
  

vejamos como fica o código do formulário : 

1- Código do evento Load do formulário: 

Este código monta o cabeçalho do MSFlexgrid definindo a largura e o nome do titulo do cabeçalho. 

Private Sub Form_Load() 
 
dataTemp = Date 
 
MSFlexGrid1.ColWidth(0) = 0 
MSFlexGrid1.ColWidth(1) = 900 
MSFlexGrid1.ColWidth(2) = 2400 
MSFlexGrid1.ColWidth(3) = 2400 



MSFlexGrid1.ColWidth(4) = 0 
MSFlexGrid1.ColWidth(5) = 900 
MSFlexGrid1.TextMatrix(0, 0) = "IdCliente" 
MSFlexGrid1.TextMatrix(0, 1) = "Codigo" 
MSFlexGrid1.TextMatrix(0, 2) = "Nome" 
MSFlexGrid1.TextMatrix(0, 3) = "Apelido" 
MSFlexGrid1.TextMatrix(0, 4) = "Endereço" 
MSFlexGrid1.TextMatrix(0, 5) = "Telefone" 
End Sub 
  

Iremos trabalhar com dois eventos das caixas de texto: 

1. Change - quando houver qualquer alteração no conteúdo de qualquer uma das caixas de texto 
iremos realizar as seguintes tarefas: 

o Verificar se um valor válido foi informado na caixa de texto 
o Habilitar/Desabilitar  o componente MSFlexgrid se a informação for válida/inválida 
o Realizar a conexão com o banco de dados 
o Montar uma instrução SQL Select usando os dados informados na caixa de texto como 

parâmetro 

            A estrutura dos comandos SQL é a seguinte : 

            SELECT * FROM tblClientes WHERE Nome Like '%" & Text2.Text & "%'" 

            Estamos usando a cláusula Like para selecionar todos os registros que tenham o critério. 

o Preencher o controle MSFlexgrid com os dados 
o Contar e exibir o número de registros achados que satisfizeram o critério informado 
o Realizar a desconexão com o banco de dados 

Abaixo temos o código do evento Change para a caixa de texto Text2 - Nome: 

Private Sub Text2_Change() 
  
If Text2.Text = "" Then 
  MSFlexGrid1.Enabled = False 
  vCodigo = "" 
  vNome = "" 
  vApelido = "" 
  vEndereco = "" 
  vTelefone = "" 
Else 
  MSFlexGrid1.Enabled = True 
End If 
  
If Text1.Text = "" And Text2.Text = "" And Text3.Text = "" And Text4.Text = "" Then 
  MSFlexGrid1.Rows = 2 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 0) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 1) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 2) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 3) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 4) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 5) = "" 
  MSFlexGrid1.Rows = MSFlexGrid1.Rows - 1 
  Me.Caption = "Buscar Cliente" 
  Exit Sub 
End If 
  
MSFlexGrid1.Rows = 2 
  
Connect 



 
RS.Open "SELECT * FROM tblClientes WHERE Nome Like '%" & Text2.Text & "%'", CON, 
adOpenStatic, adLockOptimistic 
 
Do While Not RS.EOF 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 0) = RS.Fields(0).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 1) = RS.Fields(1).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 2) = RS.Fields(2).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 3) = RS.Fields(3).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 4) = RS.Fields(4).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 5) = RS.Fields(5).Value 
  MSFlexGrid1.Rows = MSFlexGrid1.Rows + 1 
  RS.MoveNext 
Loop 

MSFlexGrid1.Rows = MSFlexGrid1.Rows - 1 

regContador = CStr(RS.RecordCount) 

If MSFlexGrid1.Rows = 2 Then 
  Me.Caption = "Buscar Cliente - " & regContador & " clientes encontrados" 
Else 
  Me.Caption = "Buscar Cliente - " & regContador & " clientes encontrados" 
End If 

Disconnect 

End Sub 

2 - Outro evento da caixa de texto que iremos usar é o evento Click.  

Quando o usuário clicar em uma caixa de texto iremos limpar o conteúdo das caixas e desabilitar o botão 
de comando - command2 - Salvar Cliente Selecionado. 

Veja abaixo o código para o evento Click da caixa de texto - Text2 - Nome. 

Private Sub Text2_Click() 
 
Text2.Text = "" 
Text3.Text = "" 
Text4.Text = "" 
Command2.Enabled = False 
 
End Sub 

A seguir vou apenas mostrar o código para as demais caixas de texto.  

Private Sub Text1_Change() 
If Text1.Text = "" Then 
  MSFlexGrid1.Enabled = False 
  vCodigo = "" 
  vNome = "" 
  vApelido = "" 
  vEndereco = "" 
  vTelefone = "" 
Else 
  MSFlexGrid1.Enabled = True 
End If 
If Text1.Text = "" And Text2.Text = "" And Text3.Text = "" And Text4.Text = "" Then 
  MSFlexGrid1.Rows = 2 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 0) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 1) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 2) = "" 



  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 3) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 4) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 5) = "" 
  MSFlexGrid1.Rows = MSFlexGrid1.Rows - 1 
  Me.Caption = "Buscar Cliente" 
  Exit Sub 
End If 
 
MSFlexGrid1.Rows = 2 
 
Connect 
RS.Open "SELECT * FROM tblClientes WHERE Codigo Like '%" & Text1.Text & "%'", CON, 
adOpenStatic, adLockOptimistic 
Do While Not RS.EOF 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 0) = RS.Fields(0).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 1) = RS.Fields(1).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 2) = RS.Fields(2).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 3) = RS.Fields(3).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 4) = RS.Fields(4).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 5) = RS.Fields(5).Value 
  MSFlexGrid1.Rows = MSFlexGrid1.Rows + 1 
  RS.MoveNext 
Loop 
MSFlexGrid1.Rows = MSFlexGrid1.Rows - 1 
regContador = CStr(RS.RecordCount) 
If MSFlexGrid1.Rows = 2 Then 
  Me.Caption = "Buscar Cliente - " & regContador & " clientes encontrados" 
Else 
  Me.Caption = "Buscar Cliente - " & regContador & " clientes encontrados" 
End If 
Disconnect 
End Sub 
Private Sub Text1_Click() 
Text2.Text = "" 
Text3.Text = "" 
Text4.Text = "" 
Command2.Enabled = False 
End Sub 
Private Sub Text3_Change() 
 
If Text3.Text = "" Then 
  MSFlexGrid1.Enabled = False 
  vCodigo = "" 
  vNome = "" 
  vApelido = "" 
  vEndereco = "" 
  vTelefone = "" 
Else 
  MSFlexGrid1.Enabled = True 
End If 
 
If Text1.Text = "" And Text2.Text = "" And Text3.Text = "" And Text4.Text = "" Then 
  MSFlexGrid1.Rows = 2 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 0) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 1) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 2) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 3) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 4) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 5) = "" 
  MSFlexGrid1.Rows = MSFlexGrid1.Rows - 1 
  Me.Caption = "Buscar Cliente" 
  Exit Sub 
End If 
MSFlexGrid1.Rows = 2 



Connect 
 
RS.Open "SELECT * FROM tblClientes WHERE apelido Like '%" & Text3.Text & "%'", CON, 
adOpenStatic, adLockOptimistic 
Do While Not RS.EOF 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 0) = RS.Fields(0).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 1) = RS.Fields(1).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 2) = RS.Fields(2).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 3) = RS.Fields(3).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 4) = RS.Fields(4).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 5) = RS.Fields(5).Value 
  MSFlexGrid1.Rows = MSFlexGrid1.Rows + 1 
  RS.MoveNext 
Loop 
 
MSFlexGrid1.Rows = MSFlexGrid1.Rows - 1 
regContador = CStr(RS.RecordCount) 
 
If MSFlexGrid1.Rows = 2 Then 
  Me.Caption = "Buscar Cliente - " & regContador & " clientes encontrados" 
Else 
  Me.Caption = "Buscar Cliente - " & regContador & " clientes encontrados" 
End If 
Disconnect 
End Sub 
 
Private Sub Text3_Click() 
Command2.Enabled = False 
Text1.Text = "" 
Text2.Text = "" 
Text4.Text = "" 
End Sub 
Private Sub Text4_Change() 
 
If Text4.Text = "" Then 
  MSFlexGrid1.Enabled = False 
  vCodigo = "" 
  vNome = "" 
  vApelido = "" 
  vEndereco = "" 
  vTelefone = "" 
Else 
  MSFlexGrid1.Enabled = True 
End If 
 
If Text1.Text = "" And Text2.Text = "" And Text3.Text = "" And Text4.Text = "" Then 
  MSFlexGrid1.Rows = 2 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 0) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 1) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 2) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 3) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 4) = "" 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 5) = "" 
  MSFlexGrid1.Rows = MSFlexGrid1.Rows - 1 
  Me.Caption = "Buscar Cliente" 
Exit Sub 
End If 
 
MSFlexGrid1.Rows = 2 
 
Connect 
 
RS.Open "SELECT * FROM tblClientes WHERE Telefone Like '%" & Text4.Text & "%'", CON, 
adOpenStatic, adLockOptimistic 



 
Do While Not RS.EOF 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 0) = RS.Fields(0).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 1) = RS.Fields(1).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 2) = RS.Fields(2).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 3) = RS.Fields(3).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 4) = RS.Fields(4).Value 
  MSFlexGrid1.TextMatrix(MSFlexGrid1.Rows - 1, 5) = RS.Fields(5).Value 
  MSFlexGrid1.Rows = MSFlexGrid1.Rows + 1 
  RS.MoveNext 
Loop 
 
MSFlexGrid1.Rows = MSFlexGrid1.Rows - 1 
 
regContador = CStr(RS.RecordCount) 
 
If MSFlexGrid1.Rows = 2 Then 
  Me.Caption = "Buscar Cliente - " & regContador & " clientes encontrados" 
Else 
  Me.Caption = "Buscar Cliente - " & regContador & " clientes encontrados" 
End If 
 
Disconnect 
 
End Sub 
 
Private Sub Text4_Click() 
Command2.Enabled = False 
Text1.Text = "" 
Text2.Text = "" 
Text3.Text = "" 
End Sub 

O código do evento Click do botão de comando - command2 - Salvar cliente Selecionado é dado a 
seguir: 

Ele faz a conexão como banco de dados e inclui um novo registro(AddNew) na tabela Cadastro. A seguir 
atribui os valores das variáveis de memória ao recordset e atualiza(Update) o registro. 

Private Sub Command2_Click() 
 
If Text1.Text = "" And Text2.Text = "" Then 
  Unload Me 
End If 
 
Connect 
RS.Open "Select * FROM Cadastro", CON, adOpenStatic, adLockOptimistic 
RS.AddNew 
RS("Nascimento") = Format(dataTemp, "dd-mm-yy") 
RS("ID") = vCodigo 
RS("Nome") = vNome 
RS("Apelido") = vApelido 
RS("Endereco") = vEndereco 
RS("Telefone") = vTelefone 
RS.Update 
Disconnect 
MsgBox "O Cliente <" & vNome & "> foi incluído com sucesso na tabela Cadastro.", vbInformation 
End Sub 
  
Finalmente o evento Click do controle MSFlexgrid irá atribuir o valor da célula que foi clicada as variáveis 
de memória que serão usadas para salvar os dados na tabela Cadastro. 
  
Private Sub MSFlexGrid1_Click() 



 
Dim Posit As Single 
 
Posit = MSFlexGrid1.Row 
 
vCodigo = MSFlexGrid1.TextMatrix(Posit, 1) 
vNome = MSFlexGrid1.TextMatrix(Posit, 2) 
vApelido = MSFlexGrid1.TextMatrix(Posit, 3) 
vEndereco = MSFlexGrid1.TextMatrix(Posit, 4) 
vTelefone = MSFlexGrid1.TextMatrix(Posit, 5) 
 
Command2.Enabled = True 
End Sub 

Abaixo temos uma visão da seleção dos registros em duas etapas de digitação do critério para o nome: 

 

Ao selecionar o cliente , clicando na célula desejada , o botão para salvar será habilita. Clicando no botão 
iremos salvar os dados na tabela Cadastro. 

Pegue o projeto completo aqui : incClientes.zip 

Eu sei, é apenas VB , mas eu gosto...  

MSFlexGrid - Editando dados diretamente no 
Grid. 

 

Artigos sobre o componente MSFlexGrid não faltam no site. Dúvida ? veja abaixo a relação ( sem contar 
as dicas) 

• VB - Carregando dados em um MSFlexGrid e DataGrid 
• VB - Operações com Matrizes 
• VB6 - DataGrid, MSFlexGrid e alguns conceitos básicos 
• MSFlexGrid - Classificando e mesclando dados 
• VB Prático - Tornando o MSFlexGrid Editável 
• Criando Recordsets Hierárquicos com o MSHFlexGrid 
• Utilizando o controle MSFlexGrid e MSHFlexGrid com ADO 



O grande problema com o MSFLexGrid é que não podemos editar diretamente os dados em suas células. 
Bem , pelos menos é o que você vai encontrar se examinar os artigos presentes no site. Mas será que não 
podemos editar diretamente os dados das células de um MSFlexGrid sem recorrer a 'cambiarras' e a 
exóticos truques de programação ? 

Eu creio que como seres humanos temos nossas limitações , mas creio também que nunca devemos 
subestimar o potencial criador do homem , afinal é isto que o diferencia dos animais irracionais ; um dom 
Divino que muitas vezes é usado para o mal. Deixando as reflexões filosóficas de lado o que quero dizer é 
que é perfeitamente possível editar os dados diretamente nas células do MSFlexGrid. Como ???? 

Vou mostrar como fazer isto neste artigo...  

Você vai começar criando um simples projeto que use o MSFlexGrid. Crie um novo projeto tipo 
StandardEXE no VB. 

A primeira coisa a fazer para usar o MSFlexGrid é adicioná-lo a caixa de ferramentas, visto que ele não é 
um objeto padrão do Visual Basic.  

Para fazer isto basta selecionar a opção Project do menu é a seguir clicar na opção Components ; 
surge a tela da figura 1.0 mostrada a seguir, a seguir selecione o componente Microsoft FlexGrid 
Control 6.0. Pronto , o objeto MSFlexGrid é visualizado a seguir na caixa de ferramentas (ver figura 
abaixo).  

Ele está pronto para ser utilizado em seus projetos. Basta você fornecer um nome para identificá-lo e 
configurar sua aparência e comportamento. 

 
 

Agora inclua o componente MSFlexGrid e o componente DataControl no formulário . A aparência do 
formulário deverá ficar conforme figura abaixo:(Estou usando os nomes padrões dos componentes - 
recomendo que em um projeto para produção você nunca faça isto.) 



 

Vamos carregar alguns dados no Grid somente para ter o que editar. Para isto vou configurar as seguintes 
propriedades do componente Data1 :: 

- DataBaseName = c:\teste\Clientes.mdb       

- RecordsetType - 1 - Dynaset 

- RecordSource - Clientes 

(Você pode usar qualquer configuração válida) 

Ao lado as propriedades já configuradas. 

 

Agora configura a propriedade DataSource do MSFlexGrid1 como sendo igual a Data1. Pronto pode 
rodar o projeto que o Grid será carregado com os dados conforme abaixo: 

 

Até agora fizemos o básico e trivial para exibir dados no MSFlexGrid. Vamos editar os dados nas células 
diretamente ?  



No evento KeyPress do componente MSFlexGrid1 insira o código abaixo: 

Private Sub 
MSFlexGrid1_KeyPress(KeyAs
cii As Integer) 
 
Select Case KeyAscii 
Case vbKeyReturn, vbKeyTab 
'move para a proxima celula. 
 
With MSFlexGrid1 
 
  If .Col + 1 <= .Cols - 1 Then 
     .Col = .Col + 1 
  Else 
     If .Row + 1 <= .Rows - 1 
Then 
         .Row = .Row + 1 
         .Col = 0 
     Else 
         .Row = 1 
         .Col = 0 
     End If 
  End If 
End With 
 
Case vbKeyBack 
 
   With MSFlexGrid1 
   'remove o ultimo caractere 
      If Len(.Text) Then 
         .Text = Left(.Text, 
Len(.Text) - 1) 
      End If 
   End With 
 
Case Is < 32 
 
Case Else 
    With MSFlexGrid1 
       .Text = .Text & Chr(KeyAscii) 
    End With 
End Select 
 
End Sub 

Figura 1.0 - Célula com o dado original - Mirassol - sendo editada 

Figura 2.0 - A célula editada com o novo valor inserido. 
Na figura 1.0 acim estou exibindo a célula original com o dado 
Mirassol sendo editada 
Na figura 2.0 temos o valor final que foi inserido na célula 
substituindo o valor original  

Como você pode ver (faça você mesmo o teste) tornamos o MSFlexGrid editável com poucas linhas de 
código. 

Tenha em mente que os valores que você digita no Grid irão se perder quando o projeto for removido da 
memória. (Não vale me xingar... ) 

Mas você pode implementar uma rotina para salvá-los e persistir a informação na sua fonte de dados sem 
grandes problemas. Deixo isto a seu cargo (quando terminar me manda a rotina para eu completar o 
artigo , OK ? ) 

Até o próximo artigo VB . Eu sei , é apenas Visual Basic , mas eu gosto ...  

 

 



VB - Carregando dados em um MSFlexGrid e DataGrid 

 

Neste artigo irei mostrar como preencher um controle MSFLexGrid e depois um DataGrid com dados de 
uma tabela de um banco de dados Access. Creio que já escrevi um artigo sobre este assunto , mas aqui 
eu quero chamar a atenção para a formatação das colunas e dos grids no formulário. 

Eu tenho uma tabela clientes em um banco de dados clientes.mdb que tem a seguinte estrutura: 

 

Pois bem , vou exibir os dados desta na tabela em um controle MSFlexGrid do VB6. Para isto inicie um 
novo projeto no VB e no formulário padrão insira um controle MSFlexGrid no menu Project|Add 
Components. Seu form deve ficar parecido com a figura abaixo: 

 

Agora eu vou criar uma função que deve receber dois parâmetros : 

1. O caminho e nome do banco de dados - no exemplo usarei - c:\teste\clientes.mdb 
2. A instrução SQL para extrair os dados da tabela - "Select * From Clientes ORDER By nome" 

O código da função que chamarei - encheGrid - é o seguinte : 

Private Function encheGrid(dados As String, sql As String) 
 
Dim conn As ADODB.Connection 
Dim rs As ADODB.Recordset 
Dim coluna As Integer 
Dim linha As Integer 
Dim largura_coluna() As Single 
Dim largura_campo As Single 
 
' abre a conexao 
Set conn = New ADODB.Connection 
conn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & dados & ";" & 
"Persist Security Info=False" 
conn.Open 
 
' pega os registros 
Set rs = conn.Execute(sql, , adCmdText) 
 
' define linhas fixas igual a uma e não usa colunas fixas 
MSFlexGrid1.Rows = 2 



MSFlexGrid1.FixedRows = 1 
MSFlexGrid1.FixedCols = 0 
 
' define o numero de linhas e colunas e cria uma matrix com o total de registros a exibir 
MSFlexGrid1.Rows = 1 
MSFlexGrid1.Cols = rs.Fields.Count 
 
ReDim largura_coluna(0 To rs.Fields.Count - 1) 
 
' exibe os cabeçalhos das colunas 
For coluna = 0 To rs.Fields.Count - 1 
   MSFlexGrid1.TextMatrix(0, coluna) = rs.Fields(coluna).Name 
   largura_coluna(coluna) = TextWidth(rs.Fields(coluna).Name) 
Next coluna 
 
' exibe o valor de cada linha 
linha = 1 
Do While Not rs.EOF 
   MSFlexGrid1.Rows = MSFlexGrid1.Rows + 1 
 
   For coluna = 0 To rs.Fields.Count - 1                                                                        
      MSFlexGrid1.TextMatrix(linha, coluna) = rs.Fields(coluna).Value                                   
                                                                                                                             
      ' verifica o tamanho dos campos                                                                            
      largura_campo = TextWidth(rs.Fields(coluna).Value)                                                  
                                                                                                                             
      If largura_coluna(coluna) < largura_campo Then largura_coluna(coluna) = largura_campo 
   Next coluna                                                                                                          
 
     rs.MoveNext 
   linha = linha + 1 
Loop 
 
' fecha o recordset e a conexao 
rs.Close 
conn.Close 
 
' define a largura das colunas do grid 
For coluna = 0 To MSFlexGrid1.Cols - 1 
     MSFlexGrid1.ColWidth(coluna) = largura_coluna(coluna) + 240 
Next coluna 
End Function 

No código acima estou fazendo o acesso ao banco de dados usando ADO. A string de conexão é : 

conn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & dados & ";" 
& "Persist Security Info=False" 
 
O grid é preenchido em um laço For/Next usando a propriedade TextMatrix(linha,Coluna) 

 MSFlexGrid1.TextMatrix(linha, coluna) = rs.Fields(coluna).Value 

rs.fields(coluna).Value representa o valor dos campos da tabela. 

A seguir basta chamar a função ; pode ser no evento Load do formulário como mostrado a seguir : 

Private Sub Form_Load() 
   Call encheGrid("c:\teste\clientes.mdb", "Select * from clientes ORDER BY nome") 
End Sub 

Para ajustar o tamanho do grid ao formulário insira o código a seguir no evento Resize do formulário: 

Private Sub Form_Resize() 



   MSFlexGrid1.Move 0, 0, ScaleWidth, ScaleHeight 
End Sub 

Executando o projeto teremos: 

 

Carregando dados em DataGrid e exibindo o valor de uma célula selecionada 

Agora vou fazer a mesma coisa usando um controle DataGrid e usando um Ado Data Control. O 
objetivo é exibir os dados no DataGrid . Para isto eu vou fazer a conexão com o banco de dados usando o 
Ado Data Control e depois vincular este controle ao DataGrid. 

Vamos então inserir os componentes DataGrid e Ado Data Control no formulário através do menu 
Project|Add Components.(Insira também um botão de comando). O layout do formulário deverá ser 
parecido com a figura abaixo: 

DataGrid - name = grdClientes 

ADODC - name = adodcClientes 

Botão de comando - name = cmdSeleciona 

O usuário irá selecionar uma célula e suas coordenadas ( linha , coluna) serão exibidas , juntamente com 
o valor da célula em uma mensagem. 

 



Vou criar uma função chamada - CarregaDados - que irá exibir os dados no dataGrid. Seu código é o 
seguinte: 

Public Sub CarregaDados() 
Dim dados As String 
 
' pega o caminho do banco de dados 
dados = App.Path 
If Right$(dados, 1) <> "\" Then dados = dados & "\" 
dados = dados & "clientes.mdb" 
 
' Conecta o controle ADODC com o banco de dados 
adodcClientes.ConnectionString = "PROVIDER=Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & 
dados & ";" 
adodcClientes.RecordSource = "SELECT * FROM clientes ORDER BY nome" 
 
' vincula o adodc ao datagrid 
Set grdClientes.DataSource = adodcClientes 
End Sub 

O código do botão - Seleciona - que irá exibir os valores das células e suas linhas e colunas é : 

Private Sub cmdSeleciona_Click() 
   ' Exibe o valor atual da celula 
   MsgBox "Celula (" & grdClientes.Row & ", " & grdClientes.Col & ") " & vbCrLf & "Valor = " & 
grdClientes.Text 
   grdClientes.SetFocus 
End Sub 

Incluimos também um código no evento Resize do formulário para ajustar o grid ao formulário: 

Private Sub Form_Resize() 
'ajusta o tamanho do dbgrid ao formulário quando este for dimensionado 
Dim largura As Single 
 
largura = ScaleWidth - cmdSeleciona.Width - 120 
 
If largura < 120 Then largura = 120 
    grdClientes.Move 0, 0, largura, ScaleHeight 
    cmdSeleciona.Left = ScaleWidth - cmdSeleciona.Width - 60 
End Sub 

Para chamar a função que carrega e exibe os dados podemos usar o evento Load do formulário:   

Private Sub Form_Load() 
  CarregaDados 
End Sub 

Pronto ! Matei dois coelhos de uma vez... Até o próximo artigo...  

 

 

VB - Operações com Matrizes 

 

Neste artigo vamos tirar do baú alguns conceitos matemáticos sobre matrizes e mostrar como criar uma 
interface a mais amigável possível para efetuar operações com matrizes.  



Para não complicar demais o código eu vou focar somente as operações de soma , subtração , 
multiplicação e produto escalar de um número por uma matriz usando números inteiros. 
Se você detesta matemática não deixe de ler o artigo pois nele vou mostrar como permitir a entra de 
dados no controle MSFlexGrid. 

Os conceitos Matemáticos 

Eu particularmente gosto de matemática , e, creio que todo bom programador também deve gostar , 
afinal conceitos matemáticos estão intimamente relacionados com a arte de programar. Assim o conceito 
de matrizes é fundamental para qualquer programador. Vamos então recordar os conceitos aprendidos na 
escola.  

a-) O que é uma matriz ? 

Matriz de ordem m x n : Para os nossos propósitos, podemos considerar uma matriz como sendo uma 
tabela rectangular de números reais (ou complexos) dispostos em m linhas e n colunas. Diz-se então que 
a matriz tem ordem m x n (lê-se: ordem m por n) 
 
Exemplos: 
 
A = ( 1 0 2 -4 5) Uma linha e cinco colunas ( matriz de ordem 1 por 5 ou 1 x 5) 

 

B é uma matriz de quatro linhas e uma coluna, portanto de ordem 4 x 1. 

Notas: 
 
1) se m = n , então dizemos que a matriz é quadrada de ordem n. 
 
Exemplo: 
 

 

A matriz X é uma matriz quadrada de ordem 3x3 , dita simplesmente de ordem 3 . 

2) Uma matriz A de ordem m x n , pode ser indicada como A = (aij )mxn , onde aij é um elemento da 
linha i e coluna j da matriz. 

Assim , por exemplo , na matriz X do exemplo anterior , temos a23 = 2 , a31 = 4 , a33 = 3 , a31 = 4 , a3,2 = 
5 ,  

Vamos ver a seguir o conceito de produto de matrizes. 

b-) Produto de matrizes 
 
Para que exista o produto de duas matrizes A e B , o número de colunas de A , tem de ser igual ao 
número de linhas de B. 

Amxn x Bnxq = Cmxq  

Se a matriz A tem ordem m x n e a matriz B tem ordem n x q , a matriz produto C tem ordem m x q 
. 



Vamos mostrar o produto de matrizes com um exemplo: 

 

Onde L1C1 é o produto escalar dos elementos da linha 1 da 1ª matriz pelos elementos da coluna1 da 
segunda matriz, obtido da seguinte forma: 
 
L1C1 = 3.2 + 1.7 = 13. Analogamente, teríamos para os outros elementos: 
L1C2 = 3.0 + 1.5 = 5 
L1C3 = 3.3 + 1.8 = 17 
L2C1 = 2.2 + 0.7 = 4 
L2C2 = 2.0 + 0.5 = 0 
L2C3 = 2.3 + 0.8 = 6 
L3C1 = 4.2 + 6.7 = 50 
L3C2 = 4.0 + 6.5 = 30 
L3C3 = 4.3 + 6.8 = 60, e, portanto, a matriz produto será igual a: 

 

Observe que o produto de uma matriz de ordem 3x2 por outra 2x3, resultou na matriz produto P de 
ordem 3x3. 

Nota: O produto de matrizes é uma operação não comutativa, ou seja: A x B # B x A 

c-) Soma e Subtração de matrizes 

Com os conceitos acima creio que não precisarei entrar em mais detalhes , assim , para que a operação 
de adição e subtração entre duas matrizes seja possível , elas devem ser da mesma ordem , ou seja, 
deverá possuir o mesmo número de linhas e de colunas. 

Assim se a ordem da matriz A for m x n e a da matriz B p x q , para que a soma seja possível teremos 
que ter m=p e n=q. 

A soma ou subtração entre duas matrizes é realizada entre a soma dos elementos da linha 1 da 1ª matriz 
pelos elementos da linha 1 da segunda matriz e assim sucessivamente. 

Resumindo temos que A soma de duas matrizes A e B, ambas de ordem m x n , é uma matriz C de 
mesma ordem, em que cada elemento é a soma dos elem entos correspondentes em A e B.  

d-) Produto escalar de um número por uma matriz 

Multiplicar uma matriz A por um número "k" é obter uma matriz B de mesma ordem de A, 
formada pelos elementos de a multiplicados por k.  

VB - Matrizes 

Vou aproveitar a oportunidade para recordar alguns dos conceitos sobre 'arrays ' no VB. 
Vamos lá...  

No VB uma 'array' ( matriz ou arranjo) faz referênc ia a um conjunto de variáveis de mesmo 
nome que identificamos por um indíce numérico com u m limite inicial e um final. Todos os 
elementos da matriz possui o mesmo tipo de dados. U m 'array' pode ter um tamanho fixo ou 
pode variar dinamicamente.  



Um 'array' de tamanho fixo é criado usando o comand o Dim usando a seguinte sintaxe:  Dim 
NomeMatriz(indice)  

Ex: Dim Matriz(5) -  A matriz terá os elementos : Matriz(0), Matriz(1), Matriz(2) , 
Matriz(3) , Matriz(4)  

Geralmente o índice inicial é zero ( podemos altera r isto usando o comando Option Base 1 
no módulo da aplicação) , mas podemos definir o índ ice incial e final na declaração do 
array: Dim Matriz( 1 to 20).  

Para criar uma matriz dinâmica basta declarar a mat riz sem definir os limites: ex: Dim 
Matriz()  

Em seguida , quando precisar , basta redimensionar a matriz usando o comando Redim. Ex: 
Redim Matriz(20)  

O comando Redim todos os valores armazenados na mat riz são perdidos , se quiser , manter 
os valores já atribuídos ao array deve usar a cláus ula :  Preserve . Ex: Redim Preserve 
Matriz(20)  

A interface com o usuário 

Se você chegou até aqui parabéns , vamos agora mostrar como criar um programa no Visual Basic , é 
claro , que efetue as operações com matrizes acima descritas. A primeira coisa que vou mostrar será a 
interface com o usuário , ou seja os formulários usados na aplicação. 

Nosso projeto terá os seguintes formulários : 

• frmmatrizes.frm - o formulário principal onde iremos exibir os controles para entrada de dados 
do usuário  

• frmresultado.frm - o formulário onde iremos exibir o resultado da operação com matrizes  
• prodmatriz.bas - o módulo onde iremos declarar as variáveis globais.  

Vou mostrar agora as três visões da aplicação ; primeiro as visões do formulário frmmatrizes.frm: 

 

- frmmatrizes.frm  

- Esta é a visão principal 
da aplicação para as 
operações 
somar/subtrair e 
multplicar , nela temos 
além das caixas de 
texto onde o usuário 
informa o número de 
linhas e de colunas para 
cada matriz , dois 
controles MSFlexgrid 
onde o usuário irá 
digitar os valores para 
cada célula da matriz. 

    



 

- frmmatrizes.frm  

-Esta é a visão do 
produto escalar de um 
número inteiro por uma 
matriz. 

    

 

- frmresultado.frm  

- Este formulário exibe 
o resultado das 
operações entre as 
matrizes. 

O codigo da aplicação 

Não vou comentar todo o código da aplicação , vou me ater somente na entrada de dados do controle 
MSFlexgrid e no código que realiza as operações de soma , subtração , produto e produto escalar.  

- A primeira coisa a fazer é escolher a operação e a seguir informar o número de linhas e colunas para 
cada matriz. Ao clicar no botão - informar valores - o sistema cria automaticamente via controle 
msflexgrid uma grade com o mesmo número de linhas e colunas informadas pelo usuário.(lembrando que 
no caso do msflexgrid o índice inicial é zero). O código que faz esta operação é dado a seguir: 

Private Sub define_tamanho_matrizA() 
  grdgrid1.Rows = Int(txtlinhas1(1).Text) 
  grdgrid1.Cols = Int(txtcolunas1(2).Text)  
 
   For i = 0 To grdgrid1.Rows - 1 
     grdgrid1.RowHeight(i) = 300 
   Next 
   For j = 0 To grdgrid1.Cols - 1 
     grdgrid1.ColWidth(j) = 700 
   Next 
End Sub 



O código acima - Define a grade usando os valores informados para o número de linhas e colunas , e 
também define o tamanho de cada célula da grade. 

- O código de entrada de dados (ver abaixo) via controle MSFlexgrid. O usuário clica na célula e digita os 
valores e tecla ENTER para ir para a próxima célula. 

'entrada de valores na Matriz A - grdgrid1  
Private Sub grdGrid1_KeyPress(KeyAscii As Integer) 
'se o caractere for um numero, ponto ou sinal de me nos então permite a entrada  
If KeyAscii > 47 And KeyAscii < 58 Or KeyAscii = 46  Or KeyAscii = 45 Or _ 
KeyAscii = 43 Or KeyAscii = 105 Or KeyAscii = 106 T hen 
   grdgrid1.Text = grdgrid1.Text + Chr(KeyAscii) 
   cnt = cnt + 1 
ElseIf KeyAscii = 8 Then 'se for um retrocesso, remove o último caractere en trado  
  If cnt > 0 Then 
    cnt = cnt - 1 
    grdgrid1.Text = Left(grdgrid1, cnt) 
  End If 
  'se pressione enter entao move para a proxima celu la  
ElseIf KeyAscii = 13 Then 
  If grdgrid1.Col < grdgrid1.Cols - 1 Then ' move para direita ate alcancar o fim da linha  
     grdgrid1.Col = grdgrid1.Col + 1 
  Else 
     grdgrid1.Col = 0 
     If grdgrid1.Row < grdgrid1.Rows - 1 Then 'entao vai para proxima linha  
        grdgrid1.Row = grdgrid1.Row + 1 
     Else 
        grdgrid1.Row = 0 'quando alcanca a ultima linha volta para primeira celula  
        grdgrid1.Col = 0 
     End If 
  End If 
ElseIf KeyAscii = 67 Or KeyAscii = 99 Then '  se pressionear c ou C limpa a celula  
     grdgrid1.Text = "" 
ElseIf KeyAscii = 61 Then 
   KeyAscii = 43 
   grdgrid1.Text = grdgrid1.Text + Chr(KeyAscii) 
   cnt = cnt + 1 
End If 
End Sub 

O código captura a tecla que o usuário digitou e verifica se ela tem um valor válido (número, sinal de -/+) ou 
se o usuário teclou o retrocesso.(KeyAscii = 8) ; neste caso é permitido a correção do valor informado. 

Para limpar a célula basta digitar o caractere C ou c. (KeyAscii = 67 Or KeyAscii = 99) 

Ao digitar a tecla - ENTER- (Keyscii = 13) o foco muda para a célula seguinte até o final do grid. 

Este código permite que o usuário informe os valores em cada célula do MSFLexgrid ; cada célula 
representa uma linha e coluna da matriz. Abaixo uma visão da entrada de dados em uma matriz 4x3 
usando o controle MSFlexgrid. 

 

- Quando o usuário informa o número de linhas e colunas e clica no botão 
informar valores , um grid com 4 linhas e 3 colunas e exibido para entrada 
de dados.  

- na parte superior temos a indicação da posição célula representando um 
elemento da linha i e da coluna j. 

Após informar os valores para cada matriz basta clicar no botão para realizar a operação selecionada. 
Vejamos agora o código de cada operação. 



- Produto de matrizes 

Public Function ProdutoMatriz() 
 
Dim i As Integer 
Dim j As Integer 
Dim k As Integer 
Dim m As Integer 
Dim produto As Single 
Dim resultado As Single 
 
ReDim MatrizResultado(grdgrid1.Rows, grdgrid2.Cols)  
 
For i = 0 To grdgrid1.Rows - 1 
  For k = 0 To grdgrid2.Cols - 1 
    resultado = 0 
    For j = 0 To grdgrid1.Cols - 1 
      If grdgrid1.TextMatrix(i, j) = "" Then 
        grdgrid1.TextMatrix(i, j) = 0 
      End If 
      If grdgrid2.TextMatrix(j, k) = "" Then 
         grdgrid2.TextMatrix(j, k) = 0 
      End If 
      produto = Val(grdgrid1.TextMatrix(i, j)) * Val(grd grid2.TextMatrix(j, k))  
      resultado = resultado + produto  
    Next j 
    MatrizResultado(i, k) = resultado 
  Next k 
Next i 
frmresultado.Show 
End Function 

Redimensionamos a variável MatrizResultado para conter o número de linhas da matriz A e o número de 
colunas da matriz B - ReDim MatrizResultado(grdgrid1.Rows, grdgrid2.Cols) 

Em um loop percorremos as linhas e colunas e multiplicamos os elementos da primeira linha pelos 
elementos da primeira coluna sucessivamente ; e armazenamos o resultado na variável produto ; a cada 
mudança de linha atribuimos o valor acumulado á variável - MatrizResultado(i,j). 

- Soma de matrizes 

O codigo para soma de matrizes é dado a seguir , para subtração basta mudar o sinal da operação de + 
para - . 

Public Function SomarMatriz() 
 
Dim i As Integer 
Dim j As Integer 
 
ReDim MatrizResultado(grdgrid1.Rows, grdgrid2.Cols)  
  For i = 0 To grdgrid1.Rows - 1 
    For j = 0 To grdgrid2.Cols - 1 
      resultado = 0 
      If grdgrid1.TextMatrix(i, j) = "" Then 
         grdgrid1.TextMatrix(i, j) = 0 
      End If 
      If grdgrid2.TextMatrix(i, j) = "" Then 
         grdgrid2.TextMatrix(i, j) = 0 
      End If 
      resultado = Val(grdgrid1.TextMatrix(i, j)) + Val(g rdgrid2.TextMatrix(i, j))  
      MatrizResultado(i, j) = resultado 
   Next j 
Next i 
frmresultado.Show 
End Function 



O codigo acima soma os elementos de cada linha da matriz A com os elementos de cada linha da Matriz 
B. O resultado é armazenado na variável - MatrizResultado(i,j). 

- Produto de um escalar por uma matriz 

Public Function EscalarMatriz() 
 
Dim i As Integer 
Dim j As Integer 
 
ReDim MatrizResultado(grdgrid1.Rows, grdgrid2.Cols)  
For i = 0 To grdgrid1.Rows - 1 
  For j = 0 To grdgrid1.Cols - 1 
    resultado = 0 
    If grdgrid1.TextMatrix(i, j) = "" Then 
       grdgrid1.TextMatrix(i, j) = 0 
    End If 
    If grdgrid2.TextMatrix(i, j) = "" Then 
       grdgrid2.TextMatrix(i, j) = 0 
    End If 
    resultado = (Val(grdgrid1.TextMatrix(i, j)) * Val( txtescalar.Text))  
    MatrizResultado(i, j) = resultado  
  Next j 
Next i 
frmresultado.Show 
End Function 

O código acima multiplica da elemento da matriz A pelo número informado e armazena o resultado na 
variável MatrizResultado(i,j). 

Obs: Perceba que o código abaixo aparece em todas as operações ; ele apenas garante que se alguma 
célula não possuir um valor o valor atribuído será o número zero. 

 If grdgrid1.TextMatrix(i, j) = "" Then  
    grdgrid1.TextMatrix(i, j) = 0 
 End If 
 If grdgrid2.TextMatrix(i, j) = "" Then  
    grdgrid2.TextMatrix(i, j) = 0 
 End If 

- Apresentando o resultado da operação 

No final de cada operação o formulário - frmresultado.frm - é invocado para exibir o resultado, 
vejamos o seu código: 

Private Sub Form_Load() 
 
grdgrid3.Rows = frmmatrizes.grdgrid1.Rows 
grdgrid3.Cols = frmmatrizes.grdgrid2.Cols 
 
For i = 0 To grdgrid3.Rows - 1 
   grdgrid3.RowHeight(i) = 300 
Next 
For j = 0 To grdgrid3.Cols - 1 
   grdgrid3.ColWidth(j) = 700 
Next 
 
For i = 0 To grdgrid3.Rows - 1 
  For j = 0 To grdgrid3.Cols - 1 
    grdgrid3.TextMatrix(i, j) = MatrizResultado(i, j)  
  Next j 
Next i 
 
End Sub 



Neste código primeiro é criado o grid com o número de linhas da Matriz A e o número de colunas da 
Matriz B: 

grdgrid3.Rows = frmmatrizes.grdgrid1.Rows 
grdgrid3.Cols = frmmatrizes.grdgrid2.Cols 

a seguir formatamos o tamanho de cada célula e atribuímos os valores armazenados na matriz 
MatrizResultado(i,j) a cada célula do grid. 

For i = 0 To grdgrid3.Rows - 1 
 For j = 0 To grdgrid3.Cols - 1 
   grdgrid3.TextMatrix(i, j) = MatrizResultado(i, j )  
 Next j 
Next i 

Abaixo vamos mostra a sequência de uma operação de produto de matrizes : 

• A matriz A = 5 x 3  
• A matriz B = 3 X 4 

 

O resultado será uma matriz da ordem : 5 x 4 conforme abaixo : 

 

Neste artigo além de aprender alguns conceitos matemáticos importantes também aprendemos outra 
forma de usar o MSFlexGrid para entrada de dados. 

 

VB6 - DataGrid, MSFlexGrid e alguns conceitos básicos. 

 

Neste artigo estarei abordando alguns conceitos básicos ; vou mostrar como realizar algumas tarefas que 
podem ser simples para quem já tem uma boa noção da linguagem mas que podem ajudar muito quem 
esta começando. Neste artigo iremos mostrar : 

1. Como usar uma conexão ADO sem fazer referência a biblioteca - Microsoft ActiveX Data Object - 
no projeto 



2. Usar uma API para dar uma pausa na aplicação 
3. Usar um driver ODBC para uma conexão ADO 
4. Preencher um controle DataGrid no modo não vinculado (unbound) 
5. Preencher um controle MSFlexGrid 
6. Usar o controle Animation para exibir uma arquivo .avi 
7. Realizar uma busca dinâmica em uma base de dados e exibir o resultado nos controles Grids 
8. Uma nova maneira de nomear os controles em tempo de execução 
9. Abnr uma base de dados Access 2000  
10. Usar a ligação tardia - Late Binding. 

Deu para notar que embora simples podemos extrair muita coisa da nossa aplicação. Vamos a trabalho... 

Introdução 

Vamos começar dando uma olhada na cara do projeto em sua fase de desenvolvimento. Veja o layout da 
aplicação abaixo: 

 

- Os controles usados neste projeto são : 

1. 3 botões de opção : 
a. optNome 
b. optSetor 
c. optContato 

2. Um controle Animation - Animation1 
3. Dois controles Label - lblbusca e lblMSFlexGrid 
4. Um controle TextBox - txtBusca 
5. Dois botões de comando : 

a. cmdBusca 
b. cmdParar 

6. Um controle MSFlexGrid : MSFlexGrid1 
7. Um controle DataGrid : DataGrid1 

O projeto possui um formulário chamado frmGrids.frm e um módulo chamado ModGrids.bas e acessa a 
base de dados Busca.mdb . (Esta base de dados é uma base de dados Access 2000 ). Iremos 
acessar os dados da tabela Employees cuja estrutura é a seguinte: 

username text  

Department text  

ContacPerson  text  

Vamos usar o arquivo Busca.avi , que consiste em uma animação de uma lanterna procurando algo , 
exibindo-o quando o usuário clicar no botão para efetuar uma pesquisa na base dados. Para isto vamos 
usar o controle Animation. 

Vamos começar a comentar o código pelo arquivo - ModGris.bas : 

1-) A seção - General Declarations - do módulo tem o seguinte código : 



Option Explicit 
'função API para dar uma pausa na aplicação  
Public Declare Sub Sleep Lib "kernel32" (ByVal dwMi lliseconds As Long)  
'constantes usadas para nomear os controles  
Public Const Cap1 = "Controles Grids no modo Não Vi nculado com Busca" 
Public Const Cap2 = "Digite Texto para Busca >>" 
Public Const Cap3 = "Procurar" 
Public Const Cap4 = "Sair" 
Public Const Cap41 = "Parar" 
Public Const Cap5 = "Empregados" 
Public Const Cap6 = "Controle MSFlex Grid" 
Public Const Cap7 = "Controle Data Grid " 
Public Const Cap8 = "Busca por Nome" 
Public Const Cap9 = "Busca por Setor" 
Public Const Cap10 = "Busca por Contato" 
 
'Variavel para o banco de dados  
Public cnxnObj As Object 
Public rstObj As Object 

Esta seção geralmente contém as variávels que devem ser visíveis em todo o projeto. Ele começa começa 
com a declaração : Option Explicit ; esta declaração irá nos obrigrar a declarar todas as variáveis que 
vamos utilizar no projeto. 

A seguir declaramos a função API - Sleep - ela é usada para dar uma pausa no processamento. O 
argumento da função é dado em milisegundos onde :  1000 milisegundos = 1 segundo 

Definimos as constantes Publicas cap1 a cap10 atribuindo a cada uma os textos que serão usados para 
identificar os controles Labels e os botões de comando usados no projeto. 

As variáveis públicas : cnxnObj e rstObj são declaradas com do tipo objeto e serão usadas para criar a 
conexão e recordset respectivamente. (Aqui usamos a ligação tardia, que será explicada mais adiante) 

2-) A seguir veremos o código da rotina - Main(). Esta rotina será executa no início da aplicação. 
Definimos isto nas propriedades do projeto , opção Project do menu do VB opção : nome_projeto 
Properties opção : Startup Object. 

Sub Main() 
  Load frmGrids  
  frmGrids.Show  
End Sub 

- Load frmGrids carrega o formulário : frmGrids 

- frmgrids.Show - exibe o formulário carregado 

3- O procedimento - AbrirBDAccess - cria uma conexão com o banco de dados - Busca.mdb. 

Public Sub AbrirBDAccess() 
Dim ConectaAccess As String 
Dim strArquivo As String 
Dim strLocal As String 
 
strArquivo = "Busca.mdb" 
strLocal = App.Path 
Set cnxnObj = CreateObject("ADODB.Connection")  
ConectaAccess = "Driver={Microsoft Access Driver (*.mdb)};" & _  
                "Dbq=" & strArquivo & ";" & _ 
                "DefaultDir=" & strLocal & ";" & _ 
                "Uid=Admin;Pwd=;" 
 
cnxnObj.Open ConectaAccess 
End Sub 

Observe que usamos a notação : Set cnxnObj = CreateObject("ADODB.Connection") 

com isto não precisamos referênciar no projeto a biblioteca ADO . Para fazer isto tivemos que declarar a 
variável cnxnObj como sendo do tipo Object. A isto chamamos de ligação tardia. Como não sabemos o 



tipo de objeto que vamos utilizar usamos a declaração genérica. Leia mais sobre isto no artigo : VB - 
Automação OLE - Usando Early Binding e Late Binding.  

A string de conexão ConectaAccess utiliza um driver ODBC para realizar a conexão : "Driver={Microsoft 
Access Driver (*.mdb)};" 

Com isto criamos uma conexão a base de dados Access 2000 - busca.mdb. Para substituir o driver 
ODBC por um provedor OLE DB substitua a string de conexão ConectaAcces como indicado no quadro 
abaixo: 

ConectaAccess = "Driver={Microsoft Access Driver (*.mdb)};" & _ 
"Dbq=" & strArquivo & ";" & _ 
"DefaultDir=" & strLocal & ";" & _ 
"Uid=Admin;Pwd=;" 

Driver ODBC 

ConectaAccess = "Provider=Microsoft.Jet.OLEDB.4.0;Persist Security Info=False;Data Source=" & strLocal & strArquivo Provedor OLE DB 

Obs: A conexão usando um provedor OLE DB é mais rápida que usando um driver ODBC. 

4- O procedimento - AbrirRecordsetAccess - cria um recordset do tipo ADO. Note que aqui também 
usamos o código: Set rstObj = CreateObject("ADODB.Recordset"). Para saber mais Leia o artigo: ADO - 
Otimizando a sua conexão nos detalhes. 

Public Sub AbrirRecordSetAccess(strSQL As String) 
   Set rstObj = CreateObject("ADODB.Recordset") 
   rstObj.Open strSQL, cnxnObj, 1, 1, 1 
End Sub 

Agora vamos ao código do formulário - frmGrids : 

1- Na seção General Declarations temos a declaração das variáveis usadas no formulário: 

Option Explicit 
 
Dim I As Integer 
Dim strTextoBusca As String  
Dim strBusca As String 
Dim FNome As Boolean 
Dim FSetor As Boolean 
Dim FContato As Boolean 

2- No evento Load do formulário atribuimos os textos de identificação aos controles ; abrimos o banco de 
dados ; abrimos o recordset passando a instrução SQL e preenchemos os grids - DataGrid e 
MSFlexGrid. 

Private Sub Form_Load() 
  'atribui os textos de identificação dos controles  
  frmGrids.Caption = Cap1 
  frmGrids.WindowState = 0 
  lblBusca.Caption = Cap2 
  cmdBusca.Caption = Cap3 
  cmdParar.Caption = Cap4 
  lblMsFlexGrid.Caption = Cap6 
  lblDataGrid.Caption = Cap7 
  Animation1.Visible = False 
  optNome.Caption = Cap8 
  optSetor.Caption = Cap9 
  optContato.Caption = Cap10 
  optNome.Value = True 
' abre o banco de dados  
Call AbrirBDAccess 
Call AbrirRecordSetAccess("SELECT * FROM Employees Order By UserName")  
Call PreencherMSFlexGrid 



Call PreencherDataGrid 
 
End Sub 

3- Abaixo o código da rotina - PreencherMSFlexGrid - que irá preencher com dados o MSFlexGrid. 

Sub PreencherMSFlexGrid() 
 MSFlexGrid1.Cols = 4 
 MSFlexGrid1.ColWidth(0) = 500 
 MSFlexGrid1.TextMatrix(0, 0) = "Sr.No" 
 For I = 0 To rstObj.Fields.Count - 1 
   MSFlexGrid1.ColAlignment(I) = vbCenter 
   MSFlexGrid1.ColWidth(I + 1) = 1500 
   MSFlexGrid1.TextMatrix(0, I + 1) = rstObj.Fields (I).Name  
 Next 
 MSFlexGrid1.Rows = rstObj.recordcount + 1 
 I = 1 
 Do While Not rstObj.EOF 
    MSFlexGrid1.TextMatrix(I, 0) = I 
    MSFlexGrid1.TextMatrix(I, 1) = rstObj(0)  'username  
    MSFlexGrid1.TextMatrix(I, 2) = rstObj(1) 'Department  
    MSFlexGrid1.TextMatrix(I, 3) = rstObj(2) 'ContactPerson  
    I = I + 1 
    rstObj.MoveNext 
 Loop 
End Sub  

1. Definimos o Grid com quatro colunas - MSFlexGrid1.Cols=4 
2. Definimos a largura da primeira coluna (0) igual a 500 - MSFlexGrid1.ColWidth(0) = 500 
3. Atribuimos o nome do cabeçalho como sendo igual ao nome das colunas da tabela. 
4. O número de linhas é definida como sendo o no. de registros mais um - MSFlexGrid1.Rows = 

rstObj.recordcount + 1 
5. Percorremos o recordset - rstObj - e atribuimos os valores : username , department e 

contacPerson  

Obs: para saber mais sobre as propriedades do MSFlexGrid leia o artigo: Utilizando o controle MSFlexGrid e 
MSHFlexGrid com ADO 

4- Agora temos o código que preenche o DataGrid -PreencherDataGrid() - bem mais simples. Apenas 
damos nome ao cabeçalho de cada coluna e atribuimos o objeto recordset a propriedade DataSource do 
controle dando a seguir um Refresh. 

Sub PreencherDataGrid() 
 
DataGrid1.Caption = Cap5 
DataGrid1.Columns.Add (0) 
 
For I = 0 To rstObj.Fields.Count - 1 
  DataGrid1.Columns(I).Caption = rstObj.Fields(I).N ame 
Next 
Set DataGrid1.DataSource = rstObj 
DataGrid1.Refresh 
End Sub 

5- O código do botão - Procurar - é dado abaixo : 

Private Sub cmdBusca_Click() 
 
On Error GoTo ErrorHandler ' tratamento de erros 
 



If txtBusca = "" Or IsNumeric(txtBusca.Text) Then 
   MsgBox "Informe um texto alfanumérico válido !", vbCritical, "Erro" 
   txtBusca.Text = "" 
   txtBusca.SetFocus 
   Exit Sub 
End If 
 
If cmdParar.Caption = Cap4 Then 
  cmdParar.Caption = Cap41 
  Screen.MousePointer = vbHourglass 
 
  Animation1.Visible = True 
  Animation1.AutoPlay = True 
  Animation1.Open App.Path & "/Busca.avi" 
  Animation1.Play (10) 
  Sleep (5000) 
 
  strTextoBusca = Trim(txtBusca.Text) 
  rstObj.Close 
  Set rstObj = Nothing 
  If FNome = True Then 
     strBusca = "SELECT * FROM Employees where UserName Like '" & strTextoBusca & "%' Order By 
UserName" 
     FSetor = False 
     FContato = False 
  End If 
  If FSetor = True Then 
     strBusca = "SELECT * FROM Employees where Department Like '" & strTextoBusca & "%' Order By 
Department" 
     FNome = False 
     FContato = False 
  End If 
  If FContato = True Then 
      strBusca = "SELECT * FROM Employees where ContactPerson Like '" & strTextoBusca & "%' Order By 
ContactPerson" 
 
      FNome = False 
      FSetor = False 
  End If 
 
 Call AbrirRecordSetAccess(strBusca) 
 MSFlexGrid1.Refresh 
 Call PreencherMSFlexGrid 
 DataGrid1.Refresh 
 Call PreencherDataGrid 
 
 Animation1.Visible = False 
 Screen.MousePointer = vbDefault 
 cmdParar.Caption = Cap4 
End If 
Exit Sub 
ErrorHandler:  'inicio do tratamento de erros 
  MsgBox "Erro  No. :" & Err.Number & vbCr & " Descrição :" & Err.Description 
  Animation1.Visible = False 
  Screen.MousePointer = vbDefault 
  Resume ' retorna a execução para a mesma linha onde ocorreu o erro 
  cnxnObj.Close 
  Set cnxnObj = Nothing 
End Sub 

1- a primeira coisa que fazemos é ativar o tratamento de erros :- On Error GoTo ErrorHandler 

2- a seguir verificamos se o usuário informou um valor válido para buscar : 



If txtBusca = "" Or IsNumeric(txtBusca.Text) Then 
MsgBox "Informe um texto alfanumérico válido !", vbCritical, "Erro" 
txtBusca.Text = "" 
txtBusca.SetFocus 
Exit Sub 
End If 

3- Ao clicar no botão Procurar , usamos o controle Animation para exibir um video de uma lanterna 
procurando algo(arquivo busca.avi) ; o código é o seguinte: 

1 Animation1.Visible = True 
2 Animation1.AutoPlay = True 
3 Animation1.Open App.Path & "/Busca.avi" 
4 Animation1.Play (10) 
5 Sleep (5000) 

1. Na linha 1 tornamos o controle animation1 visivel 
2. Na linha 2 iniciamos a execução do video 
3. Na linha 3 abrimos o arquivo de video - busca.avi 
4. Na linha 4 executamos o video 10 vezes 

O Controle Animation utiliza os seguintes comandos para realizar suas operações básicas : 

• Open - Abre o arquivo .AVI  
• Play - Inicia a execução do arquivo .avi 
• Stop - Termina a execução do arquivo .avi 

O comando Play possui ainda três argumentos : repeat , start e stop que determinam quantas vezes o 
arquivo será executado , em qual frame será iniciada a execução e onde a execução será finalizada. Se o 
argumento repeat não for informado o arquivo será executado de forma ininterrupta. Exemplos: 

a - Animation1.Play (toca o arquivo de forma ininterrupta) 

b - Animation1.Play 10, 5, 15 (executa o arquivo 10 vezes , do sexto ao decimo se xto 
frame)  

4- O código abaixo irá construir a instrução SQL conforme o botão de opção que o usuário 
clicar:  Nome , Setor ou Contato.  

If FNome = True Then 
  strBusca = "SELECT * FROM Employees where UserName Like '" & strTextoBusca & "%' Order By 
UserName" 
  FSetor = False 
  FContato = False 
End If 
If FSetor = True Then 
  strBusca = "SELECT * FROM Employees where Department Like '" & strTextoBusca & "%' Order By 
Department" 
  FNome = False 
  FContato = False 
End If 
If FContato = True Then 
 strBusca = "SELECT * FROM Employees where ContactPerson Like '" & strTextoBusca & "%' Order By 
ContactPerson" 
 FNome = False 
 FSetor = False 
End If 

5- A seguir abrimos o recordset usando a instrução SQL(strBusca) e preenchemos cada grid com os 
dados. 

Call AbrirRecordSetAccess(strBusca) 
MSFlexGrid1.Refresh 
Call PreencherMSFlexGrid 
DataGrid1.Refresh 
Call PreencherDataGrid 



6- Tornamos o controle Animation1 invisivel e atribuimos o texto definido em Cap4 ao botão de 
comando. 

Animation1.Visible = False 
Screen.MousePointer = vbDefault 
cmdParar.Caption = Cap4 

7- No tratamento de erros exibimos o número do erro e sua descrição , tornamos o controle Animation1 
invisivel , retornamos para linha onde o erro ocorreu e fechamos os objetos Connection e recordset. 

ErrorHandler: 'inicio do tratamento de erros 
MsgBox "Erro No. :" & Err.Number & vbCr & " Descrição :" & Err.Description 
Animation1.Visible = False 
Screen.MousePointer = vbDefault 
Resume ' retorna a execução para a mesma linha onde ocorreu o erro 
cnxnObj.Close 
Set cnxnObj = Nothing 

Ao executar o projeto , informar um Nome e clicar no botão procurar teremos os seguinte resultado: 

  
Iniciando a busca  O resultado da busca 

 

Imprimindo uma grade MsflexGrid 

 

Os controles de grade , em particular o MSFlexGrid , são muito efetivos para exibir um conjunto de dados. 
Embora usar o controle MSFlexGrid para exibir dados seja uma tarefa simples , já a impressão da grade 
não é uma tarefa tão fácil. É verdade que existem no mercado muitos produtos de terceiros que facilitam 
esta tarefa , mas isto além de custar dinheiro $$$ também implica em aumentar o tamanho da sua 
aplicação em alguns Mb ( dependendo do tamanho do controle).  



É claro que você pode criar a sua própria rotina para impressão de uma grade MSFlexGrid , mas , por que 
inventar a roda ? Existem várias rotinas prontas com código aberto que você pode usar.   

Este artigo vai mostrar como usar  uma rotina para impressão de uma grade MSFlexgrid onde você não 
vai precisar usar nenhum controle OCX. O código é fornecido na forma de um formulário que você inclui 
no seu projeto e usa. Eu tive a liberdade de traduzir as labels e algumas mensagens internas para facilitar 
a compreensão , mas a rotina não é de minha autoria.  

O formulário PrintGrid  

Vou apenas descrever as opções do formulário e mostrar como chamar o formulário  a partir do 
formulário do seu projeto. Abaixo o formulário PrintGrid.  

 

As opções , como você pode ver , são muitas , você pode : 

1. Definir o tamanho do papel 
2. A faixa de impressão 
3. A orientação da impressão 
4. Pode incluir um Título no relatório 
5. Selecionar uma impressora 
6. Configurar a impressora 
7. Definir a ordem de impressão 
8. Aplicar efeitos no texto de impressão 

Como Usar ? 

Para facilitar você pode carregar o formulário P0001 e salvá-lo como um modelo no diretório : 

C:\Program Files\Microsoft Visual Studio\Vb98\Template\Forms 

Para inserir o formulário modelo nos seus projetos basta usar  a opção Project| Add Form.  Se você não 
quiser fazer isto basta carregar o formulário no seu projeto na opção Add|Form  e escolher a aba 
Existing escolhendo o diretório de localização do formulário. 



Como exemplo eu criei um projeto simples onde utilizei um controle MSFlexGrid e um controle Data 
Control para exibir os dados da tabela Authors do banco de dados Biblio.mdb. Veja abaixo a tela do 
aplicativo: 

 

O botão - Imprimir Grid - contém a seguinte linha de código que irá chamar a rotina PrintGrid do 
formulário P0001: 

P001.PrintGrid MSFlexGrid1, 1, "Teste de Impressão de Grid", PrintSettings.GRID_NORMAL 

Estamos passando como parâmetros:  o nome do grid a imprimir (MSFlexGrid1) , o número padrão de 
cópias ( 1) , o título sugerido ( Teste de Impressão de Grid ) e um código de controle ( GRID_NORMAL 
). 

Com isto  a rotina PrintGrid será chamada e você poderá configurar como deseja imprimir o seu grid 
através das opções oferecidas no formulário. 

Com esta rotina você : 

1. Resolve o seu problema de impressão com as  grades MSFlexGrid 
2. Não gasta um centavo 
3. Pode estudar o código fonte e aprender coisas novas 

Obs: Você também pode usar a rotina abaixo para imprimir um MsFlexGrid via objeto Printer , mas não é 
lá essas coisas... 

Dim iTamanho as integer 
iTamanho = MSFlexGrid.Width 
MSFlexGrid.Width = Printer.Width 
Printer.PaintPicture MSFlexGrid.Picture , 0 , 0 
Printer.EndDoc 
MSFlexGrid.Width = iTamanho 

Hoje você ganhou o dia...  Faça o download do projeto com o formulário traduzido aqui : PrintGrid.zip  ( 
18 Kb ) 

Até mais e volte sempre ...    

 

MSFflexGrid - Classificando e mesclando dados 



 

O controle MSFlexGrid  já foi abordado nos seguintes artigos: 

• Usando MSFlexGrid com ADO   
• Tornando o MSFlexGrid Editável  
• Criando Recordsets Hierárquicos com o MSHFlexGrid  

Como sempre há algo novo a aprender ,  neste artigo vamos mostrar como classificar e mesclar dados no controle FlexGrid. 

Adicionando Imagens ao FlexGrid 

Você já deve saber que qualquer célula do controle FlexGrid pode conter uma imagem. Para adicionar uma imagem a uma célula você 
usa a propriedade CellPicture do grid em conjunto com a função LoadPicture. 

A sintaxe da propriedade CellPicture é: 

object.CellPicture [=picture] 

Parte Descrição 

objecto O objeto MsflexGrid 

picture Um arquivo bitmap ( BMP) , icone (ICO) ou metafile (WMF) 

 
Para identificar a linha e a coluna da célula para onde desejar carregar uma imagem você vai usar as propriedades Row e Col. E além 
da figura célula poderá conter texto também.  

Obs: O funcionamento é idêntico para o controle MSHFlexGrid 

Um exemplo de linha de código para carregar uma imagem em uma célula usando a função LoadPicture: 

Set FlexGrid1.CellPicture = LoadPicutre(app.path & "\figura.bmp")  

Agora um exemplo prático: 

• Inicie um novo projeto no VB  
• Faça uma referência ao componente - Microsoft FlexGrid Control  (Menu Project|Components...) 
• Insira o componente FlexGrid no formulário com o nome de - Grid1  
• Insira o código abaixo para carregar imagens na linha 1 colunas 1 e 2: 

Private Sub Form_Click() 
 
Grid1.Row = 1 
Grid1.Col = 1 
Set Grid1.CellPicture = LoadPicture("c:\meus 
documentos\minhas imagens\boy1.gif") 
Grid1.Text = "Aluno1" 
Grid1.Row = 1 
Grid1.Col = 2 
Set Grid1.CellPicture = LoadPicture("c:\meus 
documentos\minhas imagens\boy2.gif") 
Grid1.Text = "Aluno2"  

 
End Sub 

 

Classificando os dados no controle FlexGrid 



A classificação dos dados em um controle FlexGrid é feita selecionando a coluna pela qual deseja fazer a classificação e definindo a 
propriedade Sort da grade para uma constante de classificação do FlexGrid. 

As constantes usadas com a propriedade Sort são: 

Constante Valor Descrição 

FlexSortNone 0 Nenhuma Classificação 

FlexSortGenericAscendind 1 Classificação na ordem Ascendente(A a Z , 0 a 9 ) 

FlexSortGenericDescending 2 Classificação genérica na ordem ascendente 

FlexSortNumericAscending 3 
Classificação na ordem Ascendente , tratando strings como 
números 

FlexSortNumericDescending 4 
Classificação na ordem Descendente , tratando strings como 
números 

FlexSortStringNoCaseAscending 5 
Classifica sem levar em conta maiúsculas/minúsculas , ordem 
Ascendente 

FlexSortNoCaseDescending 6 
Classifica sem levar em conta maiúsculas/minúsculas , ordem 
Descendente 

FlexSortStringAscending 7 
Classifica levando em conta maiúsculas/minúsculas , ordem 
Ascendente 

FlexSortStringDescending 8 
Classifica levando em conta maiúsculas/minúsculas , ordem 
Descendente 

Bem , vamos ver agora como usar essas constantes: 

Existem duas técnicas que você pode usar para fazer a classificação no FlexGrid:  

1- ) Atribuir um valor da constante , vistas acima para a propriedade Sort: 

• Inicie um novo projeto no VB  
• Faça uma referência ao componente - Microsoft FlexGrid Control  (Menu Project|Components...) 
• Insira o componente FlexGrid no formulário com o nome de - Grid1  
• Insira um componente data control (Data1) e configure a propriedade DatabaseName=c:\teste\alunos.mdb 
• Configure a propriedade RecordsetType para Dynaset e defina a propriedade RecordSource=Select codigo,nome from 

alunos 
• Insira o código abaixo para que irá realizar a classificação conforme a coluna que você clicar 

Private Sub Form_Load() 
  Grid1.ColWidth(0) = 1000 
  Grid1.ColWidth(1) = 4000 
End Sub  

 

Private Sub Grid1_Click() 
 coluna = Grid1.Col 
 Grid1.Col = coluna 
 Grid1.Sort = flexSortStringAscending 
End Sub 

A seguir o resultado do processamento quando o usuário clica na coluna - Nome: 



 

Neste exemplo estamos carregando os dados da tabela Alunos do banco de dados escola.mdb. O usuário pode escolher entre 
classificar pelo código ou pelo nome apenas clicando na coluna desejada. 

2-) O outro método e esconder a coluna que será usada como critério de classificação. Assim , suponha que você tenha um campo que 
retorna a data no formato Short Date. Neste caso nenhuma das constantes usadas para classificar irão funcionar.  O que fazer então ? 

Para classificar pela data teremos que incluir uma coluna com largura igual a zero (tornando-a invisível)  e preenchê-la com os valores 
das datas convertidas para um valor numérico.(DataValue). A seguir basta classificar a coluna. Tudo fica transparente para o usuário. 
Vamos ao exemplo 

• Inicie um novo projeto no VB  
• Faça uma referência ao componente - Microsoft FlexGrid Control  (Menu Project|Components...) 
• Insira o componente FlexGrid no formulário com o nome de - Grid1 e um botão de comando - command1. 
• Insira um componente data control (Data1) e configure a propriedade DatabaseName=c:\teste\alunos.mdb 
• Configure a propriedade RecordsetType para Dynaset e defina a propriedade RecordSource=Select 

codigo,nome,datanascimento from alunos1 
• Insira o código abaixo no evento click do botão de comando para classificar a coluna por data. 

Private Sub Command1_Click() 
Dim Ro As Integer 
Dim SortCol As Integer 
Dim SortDate As Double 
 
'inclui a coluna que atuara como a chave de classificação 
MSFlexGrid1.Cols = MSFlexGrid1.Cols + 1 
SortCol = MSFlexGrid1.Cols - 1 
MSFlexGrid1.ColWidth(SortCol) = 0   'a coluna invisível 
'calcula os novos valores e preenche a coluna 
For Ro = 1 To MSFlexGrid1.Rows - 1 
  SortDate = DateValue(MSFlexGrid1.TextMatrix(Ro, 2))   ' define a coluna que será classificada 
  MSFlexGrid1.TextMatrix(Ro, SortCol) = SortDate 
Next Ro 
'efetua a classificacao 
MSFlexGrid1.Col = SortCol 'define o criterio 
MSFlexGrid1.Sort = flexSortNumericAscending 
 
End Sub 

Veja abaixo o resultado , apos o usuário clicar no botão para classificar por data: 



 

Obs: A função DateValue transforma as datas em valores numéricos e em TextMatrix(Ro, 2) definimos a 
coluna que será classificada , no caso a coluna 2 ou seja a terceira coluna. 

Mesclando os dados nas Células de um Controle FLexGrid  

Para pode usar o recurso de mesclar os dados nas células de um controle FlexGrid  é preciso fazer a seguinte configuração: 

1. Defina a propriedade MergeCells da grade para um valor que permita que você mescle os dados , pois , o padrão do controle 
é definir MergeCells como igual a zero , e , isto não permite mesclar as células. 

2. Para definir quais linhas e colunas você deseja mesclar utilize as propriedades MergeRow e MergeColl. 
3. Escreva o seu código de forma a responder a alguma ação do usuário. Ex: Clicar no gride, Clicar na coluna , de forma que 

isto indique o critério com o qual o usuário deseje fazer a mesclagem. 

A propriedade MergeCells diz como as células serão mescladas ,  a sintaxe é a seguinte: 

object.MergeCells [=value] 

Os possíveis valores para MergeCells são: 

Configuração Valor Descrição 

flexMergeNever 0 Não permite a mesclagem . É valor padrão. 

flexMergeFree 1 
Permite a mesclagem com o valor na linha ou coluna próxima 
a ela. 

flexMergeRestricRows 2 Mescla os dados apenas pelas linhas 

flexMergeRestricColumns 3 Mescla os dados apenas pelas colunas 

flexMergeRestricAll 4 Os dados serão mesclados pelas linhas e pelas colunas 

Agora vamos aplicar estes conceitos. Suponha que você tenha os seguintes dados em uma tabela ou uma consulta ( não importa ).; 

 

Dá para perceber que se você mesclar as duas primeiras colunas (nome e materia) os dados poderão ser exibidos de uma maneira mais 
elegante. Para permitir isto você pode usar o código abaixo: 



MSFLexGrid1.MergeCol(0)= True 
MSFLexGrid1.MergeCol(1)= True 

Agora   você pode definir a propriedade MergeCells para efetivamente fazer a mesclagem. Se você definir 
MergeCells=flexMergeFree , ao mudar as colunas , irá obter diferentes visões dos dados. Vamos mostrar isto em um projeto para 
não deixar dúvidas ; ao trabalho... 

Vamos acessar a tabela Notas do banco de dados Escola.mdb. Este exemplo foi preparado para ilustrar como a mesclagem funciona , 
você pode alterar os dados conforme o seu caso particular. 

• Inicie um novo projeto no VB  
• Faça uma referência ao componente - Microsoft FlexGrid Control  (Menu Project|Components...) 
• Insira o componente FlexGrid no formulário com o nome de - Grid1 e quatro botões de comando - cmdsql1, cmdsql2 , 

cmdsql3 e cmdmesclar 
• Insira um componente data control (Data1) e configure a propriedade DatabaseName=c:\teste\alunos.mdb 
• Configure a propriedade RecordsetType para Dynaset e defina a propriedade RecordSource=Select nome,materia,nota 

from Notas 
• Altere a propriedade MergeCells do MSFlexGrid para flexMergeFree(via código)  ou acessando as propriedades do 

grid e alterando na aba Style : MergeCells - 1 - Free. 

 

• Insira os códigos abaixo para o evento Click de cada botão de comando do formulário padrão: 

- Cmdsql1 - Altera a fonte de dados(Recordsource) exibindo as colunas na seguinte ordem: nome, materia e nota 

Private Sub Cmdsql1_Click() 
Data1.RecordSource = "select nome,materia,nota from notas" 
Data1.Refresh 
End Sub 

- Cmdsql2 - Altera a fonte de dados(Recordsource) exibindo as colunas na seguinte ordem:  materia, nome  e nota 

Private Sub Cmdsql2_Click() 
Data1.RecordSource = "select materia,nome,nota from notas" 
Data1.Refresh 
End Sub 

- Cmdsql3 - Altera a fonte de dados(Recordsource) exibindo as colunas na seguinte ordem: nota, nome e materia. 

Private Sub Cmdsql3_Click() 
Data1.RecordSource = "select nota,nome,materia from notas" 
Data1.Refresh 
End Sub 

- Cmdmesclar - Realiza a mesclagem das colunas definidas. (Isto é possível pois definimos MergeCells para um valor que permite a mesclagem) 



Private Sub Cmdmesclar_Click() 
Grid1.MergeCol(0) = True 
Grid1.MergeCol(1) = True 
End Sub 

No evento Load do formulário insira o seguinte código : ajusta a largura das colunas. 

Private Sub Form_Load() 
Grid1.ColWidth(0) = 2000 
Grid1.ColWidth(1) = 1200 
Grid1.ColWidth(2) = 900 
End Sub 

Agora vamos mostrar o projeto em execução para você entender como funciona: 

  

Tela inicial do sistema  
Os dados mesclados - O usuário clicou no botão - 
Efetuar Mesclagem 

abaixo mais outras visões dos dados obtidas pela mudança das colunas , quando o usuário clica nos botôes de comando que alteram a 
fonte de dados via instrução SQL. 

  

Estes exemplos foram usados apenas para ilustrar a utilização da mesclagem usando o controle MSFlexGrid . Cabe a você ir além e 
aplicar os conceitos as suas necessidades.  

 



VB Prático - Tornado o MSFlexGrid editável 

 

Vamos começar mostrando o projeto que será o objetivo deste artigo já em execução. Observe a tela 
abaixo: 

 

Você esta vendo um formulário com o controle MSFlexGrid exibindo as colunas onde deverão ser 
informados o número , nome , o bimestre e a ano de referência e as notas das disciplinas: Matemática, 
Física, Química , Português e Inglês . 

Você sabia que o controle MSFlexGrid não permite a edição das células diretamente no Grid ? 
Não sabia ? Pois é , não tem jeito ... Bem , nos vamos dar um jeito.. 

O projeto 

O formulário principal do nosso projeto possui um menu com as seguintes opções: 

• Arquivo -   
o Excluir Arquivo de dados - apaga o arquivo de dados 
o Excluir Linhas Selecionadas - exclui as linhas selecionadas do grid 

• Impressão   
o  Visualizar - visualiza impressão 
o  Imprimir - imprime o grid 

• Sobre - Exibe um formulário com informações sobre o projeto 
• Sair - Encerra o sistema 

Percebeu que não existe botão para incluir nem alterar os dados !! Fazemos isto diretamente no grid , 
digitando os dados nas células correspondentes. É só posicionar o cursor na célula e começar a digitar os 
valores correspondentes. A cor amarela da caixa de texto indica que você esta editando uma 'célula' . A 
mudança para a célula seguinte é automática. Para editar você escolhe a célula e clica sobre ela ou 
pressiona ENTER ou tecla F2. Veja tela abaixo: 



 

E se você errar o valor da nota informando um valor maior que 10 ou menor que 0 ? O Sistema faz a 
crítica e exibe uma mensagem informando o erro. E tem mais , as notas maiores que 5 são exibidas na 
cor azul e as menores que 5 na cor vermelha. Veja abaixo: 

 

Quer visualizar a impressão ? É só selecionar a opção no menu Impressão. Veja o resultado: 

 

Você pode excluir as linhas desejadas selecionando-as e pressionando a tecla Delete ou usando a opção 
Excluir linhas Selecionadas do menu Arquivo.  

E os dados informados ? Onde serão armazenados ? Bem , o projeto , usando uma filosofia de economia 
de recursos e pela sua própria simplicidade armazena os dados em um arquivo texto - Boletim.txt . 
Quando você encerrar o aplicativo o sistema lhe dará uma mensagem solicitando o salvamento ou não 
dos dados. Veja tela a seguir: 



 

Para encerra esta exposição , ao clicar no hiperlinks para a URL o sistema tentará abrir a página 
informada , se clicar no endereço eletrônico exibido o sistema chamara seu editor de e-mails padrão. 

Agora vamos mostrar como fazer esta 'mágica' comentando as partes mais importantes do código usado 
no projeto. 

O projeto Comentado 

O formulário principal foi chamado de - Ogrid. Eí-lo abaixo: 

 

Temos aqui: um controle MSFlexGrid (grid_boletim)  , um controle caixa de texto (text1) , três labels : 
label1(Boletim Escolar 2001 - JcmSoft) , label2 e label3 , um controle image (figura do menino) e um 
menu criado no Menu Editor (Opção Tool do menu do VB). 

A seção General Declarations do formulário contém o código onde declaramos as variáveis e as API´s 
usadas no projeto 

Option Explicit 
 
'declarações a api para exibir a caixa de dialog da impressora 
Private Declare Function PrinterProperties Lib "winspool.drv" _ 
(ByVal hwnd As Long, ByVal hPrinter As Long) As Long 
 
Private Declare Function OpenPrinter Lib "winspool.drv" _ 
Alias "OpenPrinterA" (ByVal pPrinterName As String, _ 
phPrinter As Long, pDefault As PRINTER_DEFAULTS) As Long 
 
Private Declare Function ClosePrinter Lib "winspool.drv" _ 



(ByVal hPrinter As Long) As Long 
 
Private Type PRINTER_DEFAULTS 
pDatatype As Long ' String 
pDevMode As Long 
pDesiredAccess As Long 
End Type 
 
Private Const STANDARD_RIGHTS_REQUIRED = &HF0000 
Private Const PRINTER_ACCESS_ADMINISTER = &H4 
Private Const PRINTER_ACCESS_USE = &H8 
Private Const PRINTER_ALL_ACCESS = (STANDARD_RIGHTS_REQUIRED Or _ 
PRINTER_ACCESS_ADMINISTER Or PRINTER_ACCESS_USE) 
 
'------------------API para executar browser/E-mail------------------------------------------------- 
Private Declare Function ShellExecute Lib "shell32.dll" Alias "ShellExecuteA" _ 
(ByVal hwnd As Long, ByVal lpOperation As String, ByVal lpFile As String, _ 
ByVal lpParameters As String, ByVal lpDirectory As String, ByVal nShowCmd As Long) As Long 
 
 
'---------declarações do sistema------------------------------------- 
Private ArquivoDados As String ' Arquivo com os dadaos do grid 
Const NovaLinha As String = ">*" ' Indica uma nova linha 
Private ControlVisible As Boolean ' Se o controle esta visivel ou nao 
Private LastRow As Long ' Ultima linha em que se editou 
Private LastCol As Long ' ultima coluna em que se editou 

No evento Form_Load , temos o seguinte código: 

Private Sub Form_Load() 
Dim i As Long 
Dim caminho As String 
caminho = App.Path  

With Label2 
  .AutoSize = True 
  .ForeColor = vbBlue 
  .Font.Underline = True 
  .Caption = "http://www.geocities.com/macoratti" 
End With 

With Label3 
  .AutoSize = True 
  .ForeColor = vbBlue 
  .Font.Underline = True 
  .Caption = "macoratti@riopreto.com.br" 
End With 

ArquivoDados = caminho & IIf(Right$(caminho, 1) = "\", "", "\") & "Boletim.txt" 
OcultarControles 
CabecalhoGrid 
LerDados 

End Sub 

Aqui configuramos as labels usadas nos hiperlinks . definimos o arquivo de dados e chamamos as 
procedures  que irão fazer o programa rodar. 

Como fazemos a edição no grid ? Para isto usamos o controle caixa de texto - text1 - e quando o 
cursor estiver selecionando uma célula ao pressionar a tecla Enter ou F2 ou clicar na célula escolhida , 
para simular uma edição da célula , fazemos o seguinte: 

• Movemos o controle text1 exatamente para posição da célula 
• fazemos com que a caixa de texto se torne visível e fique exatamente do mesmo tamanho da 

célula  
• Posicionamos a caixa de texto sobre a célula  



A partir dai tudo se passa para o usuário como se ele estivesse digitando diretamente na célula , mas na 
verdade esta digitando na caixa de texto. Ao encerrar a entrada de dados apenas atribuimos o informado 
na caixa de texto para célula correspondente no grid.  

Abaixo temos o código envolvido na seguinte sequência: 

• Evento KeyPress do Grid - acionado quando o usuário pressiona qualquer tecla  
• Se pressionar qualquer tecla que não seja ENTER nem ESC a procedure ExibirCelula e chamada e 

o caixa de texto é tornada visível 

Private Sub Grid_Boletim_KeyPress(KeyAscii As Integer) 
Select Case KeyAscii 
' Editar ao teclar ENTER 
Case vbKeyReturn 
   KeyAscii = 0 
   ExibirCelula 
' Cancelar ao pressionar ESC 
Case vbKeyEscape 
  KeyAscii = 0 
  AtribuiValorCelula 
' Editar ao pressinar qualquer tecla 
Case 32 To 255 
  ExibirCelula 
  With Text1 
     If .Visible Then 
      .Text = Chr$(KeyAscii) 
      .SelStart = Len(.Text) + 1 
    End If 
  End With 
End Select 
End Sub 

Abaixo a procedure ExibirCelula: 

Private Sub ExibirCelula() 
Static OK As Boolean 
' 
' Se for celula fixa , sair 
If Grid_boletim.Col <= Grid_boletim.FixedCols - 1 Or Grid_boletim.Row <= Grid_boletim.FixedRows - 1 Then 
   Exit Sub 
End If 
 
If OK Then Exit Sub 
OK = True 
' 
OcultarControles 
' 
LastRow = Grid_boletim.Row 
LastCol = Grid_boletim.Col 
' 
' Nova Celula 
With Grid_boletim 
  If .TextMatrix(LastRow, 0) = NovaLinha Then 
    .Rows = .Rows + 1 
    .TextMatrix(LastRow, 0) = LastRow 
    .TextMatrix(.Rows - 1, 0) = NovaLinha 
  End If 
End With 
' 
Select Case LastCol 
Case Else  

Text1.Move Grid_boletim.CellLeft - Screen.TwipsPerPixelX, Grid_boletim.CellTop + 550 - Screen.TwipsPerPixelY, Grid_boletim.CellWidth + 
Screen.TwipsPerPixelX * 2, Grid_boletim.CellHeight + Screen.TwipsPerPixelY * 2 
Text1.Text = Grid_boletim.Text 

If Len(Grid_boletim.Text) = 0 Then 
   If LastRow > 1 Then 
       Text1.Text = Grid_boletim.TextMatrix(LastRow - 1, LastCol) 
   End If 
End If 

Text1.Visible = True 

If Text1.Visible Then 
  Text1.ZOrder 
  Text1.SetFocus 



End If 
End Select 
' 
ControlVisible = True 
' 
OK = False 
End Sub 

As rotinas para Ler os dados e Gravar os dados utilizam os velhos comandos : Open, Line Input , Print. 

Private Sub LerDados() 
' Ler dados e preencher o grid 
Dim nFic As Long 
Dim r As Long 
Dim c As Long 
Dim texto As String 
' 
' se nao existe o arquivo sai 
If Len(Dir$(ArquivoDados)) = 0 Then 
   MsgBox "O arquivo de dados não foi localizado !!!" 
   Exit Sub 
End If 
' 
r = Grid_boletim.Rows - 2 
nFic = FreeFile 
Open ArquivoDados For Input As nFic  

Do While Not EOF(nFic) 
r = r + 1 
Grid_boletim.Rows = r + 2 
Grid_boletim.TextMatrix(r, 0) = r 
For c = 1 To Grid_boletim.Cols - 1 
  If Not EOF(nFic) Then 
     Line Input #nFic, texto 
     Grid_boletim.TextMatrix(r, c) = texto 
  Else 
     Exit For 
  End If 
Next 
Loop 
Close nFic 
' 
With Grid_boletim 
  .TextMatrix(.Rows - 1, 0) = NovaLinha 
  LastRow = .Rows - 1 
  LastCol = 1 
  .Col = LastCol 
  .Row = LastRow 
  .RowSel = LastRow 
  .ColSel = LastCol 
End With 
End Sub 

 

Private Sub GravarDados() 
' Gravar os dados do grid 
Dim nFic As Long 
Dim r As Long 
Dim c As Long 
' 
nFic = FreeFile 
Open ArquivoDados For Output As nFic 
' Não guardar a ultima lina 
For r = 1 To Grid_boletim.Rows - 2 
   For c = 1 To Grid_boletim.Cols - 1 
        Print #nFic, Grid_boletim.TextMatrix(r, c) 
   Next 
Next 
Close nFic 
End Sub 

Para visualizar e imprimir o grid usamos a mesma procedure - ImprimeGrid - somente alterando o objeto 
: de form para printer. Ah, antes de imprimir usamos uma API para exibir a caixa de diálogo da 
impressora padrão.  O código da impressão é o seguinte: 

Private Sub ImprimeGrid(ByVal ptr As Object, ByVal flx As MSFlexGrid, ByVal xmin As Single, ByVal 
ymin As Single) 
Const GAP = 60 



 
Dim xmax As Single 
Dim ymax As Single 
Dim X As Single 
Dim c As Integer 
Dim r As Integer 
 
With ptr.Font 
  .Name = Grid_boletim.Font.Name 
  .Size = Grid_boletim.Font.Size 
End With 
 
With Grid_boletim 
' verificar a largura. 
xmax = xmin + GAP 
For c = 0 To .Cols - 1 
   xmax = xmax + .ColWidth(c) + 2 * GAP 
Next c 
 
' imprime cada linha 
ptr.CurrentY = ymin 
For r = 0 To .Rows - 1 
 ' desenha uma linha acima desta linha. 
   If r > 0 Then ptr.Line (xmin, ptr.CurrentY)-(xmax, ptr.CurrentY) 
   ptr.CurrentY = ptr.CurrentY + GAP 
 
  ' Imprime o conteudo da linha 
  X = xmin + GAP 
  For c = 0 To .Cols - 1 
     ptr.CurrentX = X 
     ptr.Print BoundedText(ptr, .TextMatrix(r, c), .ColWidth(c)); 
     X = X + .ColWidth(c) + 2 * GAP 
  Next c 
  ptr.CurrentY = ptr.CurrentY + GAP 
 
  ' Vai para proxima linha 
  ptr.Print 
Next r 
ymax = ptr.CurrentY 
 
' desenha uma caixa 
ptr.Line (xmin, ymin)-(xmax, ymax), , B 
 
' Desenha linhas 
  X = xmin 
  For c = 0 To .Cols - 2 
    X = X + .ColWidth(c) + 2 * GAP 
    ptr.Line (X, ymin)-(X, ymax) 
  Next c 
End With 
End Sub 

A chamada a API é feita pela função abaixo: 

Public Function DisplayPrinterProperties(DeviceName As String) As Boolean 
 
'Exibe a caixa de dialogo da impressora 
'PARAMETRO: DeviceName: O nome da impressora padrao 
'COMO CHAMAR : DisplayPrinterProperties Printer.DeviceName 
 
On Error GoTo ErrorHandler 
Dim lAns As Long, hPrinter As Long 
Dim typPD As PRINTER_DEFAULTS 
 
typPD.pDatatype = 0 
typPD.pDesiredAccess = PRINTER_ALL_ACCESS 
typPD.pDevMode = 0 
lAns = OpenPrinter(Printer.DeviceName, hPrinter, typPD) 
If lAns <> 0 Then 
   lAns = PrinterProperties(Me.hwnd, hPrinter) 
   DisplayPrinterProperties = lAns <> 0 
End If 
 
ErrorHandler: 
If hPrinter <> 0 Then ClosePrinter hPrinter 
 
End Function 

Abordamos aqui somente alguns dos aspectos envolvidos no projeto (não comentamos os formulários frmabout nem o 

formulário frmvisualiza) , é claro que você poderá expandir e melhorá-lo adequando as suas necessidades , se 
for o caso.  



 

VB - FlashBack :  MsFlexGrid preenchendo o controle com dados II 

 

Continuando o flashback sobre o MSflexGrid vamos melhorar o projeto do artigo -  VB - FlashBack :  
MsFlexGrid preenchendo o controle com dados- e criar um visualizador genérico de tabelas só que vamos 
variar um pouco fazendo o acesso aos dados usando DAO. 

Para saber mais sobre DAO leia os seguintes artigos do site: 

• DAO revisitado - Perguntas e Respostas 
• DAO - Criando Tabela e definindo índices 
• DAO - Replicando uma base de dados 
• Migração ADO/DAO 
• Migração ADO/DAO - Abrindo uma Base de Dados 

Se você esta chegando agora e pretende aprender Visual Basic para acessar dados , o MsFlexGrid é um 
controle com muitos recursos que você pode usar para obter resultados satisfatórios. Então leia os artigos 
do site já publicados a respeito: 

VB - Busca Dinâmica com MSFlexgrid 

• VB - Editando  dados diretamente no MSFlexGrid  
• VB - Carregando dados em um MSFlexGrid e DataGrid  
• VB - Operações com Matrizes 
• VB6 - DataGrid, MSFlexGrid e alguns conceitos básicos 
• Imprimindo grades MSFlexGrid - A solução 
• MSFlexGrid - Classificando e mesclando dados 
• VB Prático - Tornando o MSFlexGrid Editável  

Preenchendo um MSFlexGrid com dados de uma tabela selecinada 

Abre o seu Visual Studio o u Visual Basic e crie um novo projeto do tipo Standard EXE 

Antes de iniciar é preciso incluir os controles CommonDialog e  MSflexGrid na ToolBox. Faça isto no menu 
Project|Components e selecione em seguida os controles indicados. 

 

No formulário padrão inclua os controles : TextBox ,Label, CommandButton, CommondDialog  e 
MSFlexGrid 



 

Na seção General Declarations do formulário defina as variáveis que serão visíveis em todo o 
formulário: 

Option Explicit 
'define as variaveis objeto para banco de dados e recordset 
Dim db As Database 
Dim rs As Recordset 
Dim arquivoDB As String 
Dim senhaDB As String 

O evento Load do formulário irá chamar a janela de diálogo para selecionar o banco de dados: 

Private Sub Form_Load() 
   Call mostra_db 
End Sub 

No evento Click do botão que irá abrir a janela de diálogo - Selecione o Banco de Dados - irá limpar as 
caixas de listagem e também chamar a rotina que exibe a janela para selecionar o banco de dados: 

Private Sub Command2_Click() 
List1.Clear 
List2.Clear 
Call mostra_db 
End Sub 

O código da rotina mostraDB que mostra a janela de diálogo para selecionar o banco de dados é o 
seguinte : 

Sub mostra_db() 
'filtra os arquivos com extensão .mdb 
CDialog.Filter = "MDB Arquivos (*.mdb)|*.mdb" 
'define o titulo da janela 
CDialog.DialogTitle = "Arquivo Mdb selecionado" 
'abre a janela 
CDialog.ShowOpen 



arquivoDB = CDialog.FileName 
 
lblnomedb.Caption = arquivoDB 
senhaDB = InputBox("Informe a senha do Banco de dados se ele 
estiver protegido com senha", "Banco de dados") 
End Sub 

No evento Click do botão - Exibir Tabelas -  que irá exibir as tabelas no ListBox. 

Private Sub Command1_Click() 
Dim i As Integer 
On Error GoTo trata_Erro 
 
'limpa o conteudo do controle listbox 
List1.Clear 
'se foi informado o nome do arquivo então abre o arquivo e 
preenche o  listbox com as tabelas 
If arquivoDB <> "" Then 
    If senhaDB <> "" Then 
        Set db = OpenDatabase(arquivoDB, False, False, "MS 
Access;pwd=" & senhaDB) 
    Else 
        Set db = OpenDatabase(arquivoDB, False, False) 
    End If 
    'prenche o listbox com todas as tabelas do banco de dados 
    For i = 0 To db.TableDefs.Count - 1 
        List1.AddItem db.TableDefs(i).Name 
    Next 
End If 
Exit Sub 
 
trata_Erro: 
    'se houver senha deve ser informada 
    If Err.Number = 3031 Then 
        senhaDB = InputBox("Informe a senha : ") 
    Else 
        MsgBox Err.Number & " : " & Err.Description 
    End If 
End Sub 

Quando o usuário clicar no controle ListBox para selecionar uma tabela a mesma deverá ter sua 
estrutura exibida no segundo ListBox e os seus dados no controle MsFlexGrid. O código que faz isto é o 
seguinte : 

Private Sub List1_Click() 
 
Dim i As Integer 
Dim sno As Integer 
'MousePointer = vbHourglass 
 
'limpa o listbox 
List2.Clear 
 
'inclui o cabeçalho no listbox 
List2.AddItem "Nome" & vbTab & vbTab & "Tipo" & vbTab & 
"Tamanho" 
For i = 0 To db.TableDefs(List1.ListIndex).Fields.Count - 1 
    List2.AddItem db.TableDefs(List1.ListIndex).Fields(i).Name & vbTab 
& _  
            db.TableDefs(List1.ListIndex).Fields(i).Type & vbTab & 
db.TableDefs(List1.ListIndex).Fields(i).Size 
Next 
 



'Exibindo os dados da tabela selecionada 
'limpa o controle msflexgrid 
MSFlexGrid1.Clear 
'tratamento de erro 
On Error Resume Next 
Set rs = db.OpenRecordset("select count(*) from [" & 
List1.List(List1.ListIndex) & "]") 
If Err.Number <> 0 Then 
    MsgBox "O recordset não pode ser aberto devido ao erro:  " & 
Err.Description 
    MousePointer = vbDefault 
    Exit Sub 
End If 
 
If rs(0) > 0 Then 
    MSFlexGrid1.Rows = rs(0) + 1 
Else 
    MSFlexGrid1.Rows = 2 
End If 
 
'abre um recordset para a tabela selecionada 
Set rs = db.OpenRecordset("select * from [" & 
List1.List(List1.ListIndex) & "]") 
MSFlexGrid1.Cols = rs.Fields.Count + 1 
sno = 1 
 
MSFlexGrid1.Row = 0 
MSFlexGrid1.Col = 0 
MSFlexGrid1.Text = "Sno" 
For i = 0 To rs.Fields.Count - 1 
    MSFlexGrid1.Col = i + 1 
    MSFlexGrid1.Text = rs.Fields(i).Name 
Next 
 
If rs.EOF = False Then 
'Atribuindo o nome das colunas para o flexgrid 
    While Not rs.EOF 
        MSFlexGrid1.Row = sno 
        MSFlexGrid1.Col = 0 
        MSFlexGrid1.Text = sno 
        For i = 0 To rs.Fields.Count - 1 
            MSFlexGrid1.Col = i + 1 
            MSFlexGrid1.Text = IIf(IsNull(rs(i)), "", rs(i)) 
        Next 
        sno = sno + 1 
        DoEvents 
        rs.MoveNext 
    Wend 
End If 
MousePointer = vbDefault 
End Sub 

O resultado será exibido conforme a janela abaixo: 



 

 

Trabalhando com aplicações em 3 camadas - Parte I 

 

No mundo real as situações costumam ser bem mais complexas do que no mundo teórico. Na verdade 
toda a teoria , seja ela em qualquer área , procura idealizar um modelo para explicar um 
comportamento/fenômeno do mundo real. Essa teoria terá tanto mais crédito/sucesso  quanto melhor 
poder explicar tal comportamento/fenômeno. 

Quando trabalhamos com aplicações que gerenciam informações onde estão envolvidos vários ambientes 
e milhares de usuários simultâneos , a complexidade vai muito além daquele ambiente onde você acessa 
diretamente o banco de dados , i.e , um ambiente cliente/servidor onde o cliente esta diretamente ligado 
á fonte de informações. 

Não seria possível implantar e manter , em termos de custos e mesmo de desempenho,  o modelo onde 
um aplicativo cliente faz uma conexão com uma fonte de dados e mantém esta conexão aberta por um 
longo período de tempo.  Multiplique isto por milhares de conexões e teremos um problema gigantesco. 

Além disto , como o código para a  manipulação dos dados esta no aplicativo cliente , qualquer alteração 
ou atualização de código deverá ser feita no cliente com reinstalação  do aplicativo. Sem contar que 
devido aos diversos ambientes ( Windows , Unix , OS/2 ... ) a complexidade para atualizar cada front-end 
aumenta. Multiplique novamente este efeito para milhares de front-ends em diversos ambientes e 
imagine o tamanho do problema. 

Para tentar enfrentar esses problemas temos um modelo teórico : O desenho de aplicativos em 3 
camadas. 

Por que três camadas ?  Ora , porque o problema é dividido em três partes.(didaticamente falando). As 
três camadas são: 



1. Apresentação 
2. Negócio 
3. Dados 

 

Este modelo desloca a lógica de negócios e a conexão com o banco de dados da camada do cliente para a 
camada de negócios e a camada de dados.  Se você precisar fazer qualquer alteração na lógica de 
negócios ou no código de acesso aos dados não vai ter que alterar nada nos aplicativos clientes . Além 
disto você poderá reutilizar os componentes em muitos clientes mesmo com ambientes diferentes. 

Na camada de negócios geralmente trabalhamos com componentes. Sabe o que é um componente ? Você 
já usou ADO ?  Se já , então usou um componente ActiveX. Na camada de apresentação , os aplicativos 
clientes fazem a interface do usuário final com a camada de negócios e de dados .  Quando vamos 
implantar lógica de negócios ou métodos de acesso a dados precisamos criar nossos próprios 
componentes. Vamos ver como fazer isto na camada de dados. 

As principais tarefas que a camada de negócios e a camada de apresentação realizam são: 

• Incluir dados 
• Alterar dados 
• Excluir dados 
• Navegar pelos dados 

Estas tarefas estão relacionadas com a camada de dados. Então para criar nosso componente da camada 
de dados devemos realizar as seguintes etapas: 

• Criar o Banco de dados e a tabela para o nosso caso 
• Criar os procedimentos para adicionar, alterar, excluir e navegar pelos dados 
• Utilizar recordsets desconectados 
• encapsular os procedimentos usados 
• Finalmente testar o nosso componente. 

Criando o banco de dados e a tabela Clientes 

Vamos usar como exemplo um banco de dados do SQL Server 2000 ( poderia ser um banco de dados 
Access) . O banco de dados Clientes e a tabela Clientes que vamos criar logo a seguir. Eu poderia utilizar 
um banco de dados já presente no SQL Server 2000 (Pubs ou Northwind) , mas vou mostrar como criar 
um banco de dados , uma tabela , como inserir dados na tabela e somente a partir deste ponto estarei 
retornando ao objetivo do artigo.(Esta parte é uma reprise do artigo: Acessando dados no SQL Server 
com o VB - Usando ADO DATA Control )  Nosso roteiro será o seguinte: 

1-) Criaremos um banco de dados chamado Clientes 
2-) Criaremos uma tabela com o nome de Clientes 
3-) Incluiremos alguns dados na tabela Clientes 

Antes de começar você deve verificar se o SQL Server esta mesmo instalado na sua máquina. Selecione 

Service Manager no menu Iniciar ou clique  no ícone na barra de tarefas do Windows. A janela - SQL 
Service Manager - deverá aparecer na sua tela. Selecione o Serviço SQL Server e clique no botão - 
Star/Continue. 



 

Se tudo deu certo , você esta pronto para começar. 

Criando um Banco de dados no SQl Server 

O Banco de dados SQL Server 2000 e composto de vários componentes lógicos , são as tabelas , índices 
, visões , stored procedures , triggers , etc. 

Um servidor SQL Server pode possuir vários banco de dados que por sua vez pertencem a diversos 
usuários. Cada instância de um SQL Server 2000 possui quatro bancos de dados de sistema : master , 
model , tempdb e msdb. 

Um banco de dados no SQL Server pode ser entendido como uma coleção de:  tabelas, visões , índices , 
triggers e stored procedures. Ele é composto por três arquivos:  

• primário (Primary file)  - Permite inicializar e carregar o banco de dados 
• secundário (secundary file) - Existe somente se o arquivo primário não foi suficiente para manter 

os arquivos do sistema 
• log - utilizado para fazer a recuperação do banco de dados. 

Vamos criar um banco de dados usando o Enterprise Manager . Para iniciar o Enterprise Manager 
selecione as opções: Programa|Microsoft SQL Server|Enterprise Manager. 

 

A janela - SQL Server Enterprise Manager - ira surgir na sua tela: 



 

Esta janela mostra no lado esquerdo uma árvore hierárquica começando nos grupos de servidores indo 
ate os objetos dos bancos de dados. Expanda as ramificações até obter a estrutura da figura acima e a 
seguir clique com o botão direito do mouse sobre o objeto Databases selecionando a opção - New 
Database - do menu suspenso. 

 

Na janela - Database Properties - aba - General - informe o nome do banco de dados - Clientes - na 
caixa de texto Name. O Banco de dados primário - clientes_data.mdf - e o arquivo de Log - 
Clientes_Log.Idf são criados. 



 

Clique na aba Data Files e veja o arquivo primário. Informe o seu tamanho Inicial como sendo de 10 Mb 
e deixe as opções - Automatically grow File e Unrestricted File growth selecionadas. Com isso 
permitimos que nosso banco de dados cresça automaticamente e sem limites. 

 



Agora clique na aba Transaction Log e defina o tamanho do arquivo de Log com 10 Mb. 

 

Você já pode clicar no botão OK . Com isso retornamos a janela do Enterprise Manager e já podemos ver 
nosso banco de dados Clientes criado no lado direito. 

 

Criando uma Tabela no SQL Server 2000 

Uma tabela é composta de linhas e colunas; onde as linhas representam um registro da tabela e as 
colunas os campos.(Não pode haver duas colunas com o mesmo nome na tabela) Nossa tabela deverá conter os 
seguintes informações: 

• ID -  Representa o código de cada cliente - Será um campo chave primária do tipo Inteiro. 
• Nome - O nome do cliente 
• Endereço - O endereço do cliente 
• Nascimento - A data de nascimento do cliente 
• Observacao - Alguma observação sobre o cliente 



Vamos agora criar a tabela Clientes no banco de dados Clientes recém criado. Expanda a ramificação 
pertinente ao banco de dados Clientes e clique com o botão direito do mouse sobre o objeto  Tables . A 
seguir selecione a opção New Table do menu suspenso. 

 

A janela do Enterprise Manager - New Table - irá surgir na sua tela. Nesta Janela iremos definir os 
campos de nossa tabela. Para isto usaremos as colunas : 

• Column Name - O nome que vai identificar a coluna da tabela 
• Data Type - O tipo de dado da coluna 
• Lenght - Representa o tamanho da coluna. ( Muitas vezes é fixo) 
• Allow Nulls - Determina se a coluna aceitará valores nulos indicando se o preenchimento será 

obrigatório ou não. 

Obs: Os tipos de dados utilizados na nossa tabela são:  

1. Int ou Integer - Um valor numérico de 32 bits  ( -2.147.483.648 a 2.147.483.648 ) 
2. VarChar - Valores alfanuméricos . Campo fixo com tamanho máximo de 8000 bytes. 
3. DateTime - data e horário com precisão de 3.33 milisegundos ( 01 de janeiro de 1753 até 31 de 

dezembro de 9999) 

Vamos preencher cada coluna como indicado  na figura abaixo e a seguir clicar no ícone Save para 
informar o nome da tabela na janela Choose Name. 



 

Após salvar a tabela , feche a janela New Table  e na janela do Enterprise Manager clique sobre o 
objeto Tables. Você deverá ver a direita uma relação de tabelas do banco de dados Clientes. Dentre elas 
nossa tabela clientes está lá. ( Quando uma tabela é criada ela é colocada no FileGroup Padrão) 

 

Bem  , o banco de dados esta criado e a tabela pronta. Vamos agora inserir alguns dados na tabela. 
Vamos fazer isto diretamente no Enterprise Manager.  

• Clique com o botão direito do mouse sobre a tabela Clientes e a seguir selecione as opções Open 
Table | Return all rows 



 

• Agora digite os dados , conforme a figura abaixo. Lembre-se que você não precisa informar o valor 
para o campo ID pois o SQL atribui um valor automaticamente a este campo. 

 

Já esta tudo pronto para a segunda parte : Criar os procedimentos armazenados para adicionar, 
alterar, excluir e navegar pelos dados. 

Vamos continuar com a segunda parte deste artigo : Usando o Create Store Procedure Wizard ...  

 

Trabalhando com aplicações em 3 camadas - Parte II 

 

Continuando o nosso artigo , lembramos que estamos nos concentrando na camada de dados onde 
deveremos realizar as seguintes tarefas: 

1. Criar o Banco de dados e a tabela para o nosso caso 
2. Criar os procedimentos para adicionar, alterar, excluir e navegar pelos dados 
3. Utilizar recordsets desconectados 
4. encapsular os procedimentos usados 
5. Finalmente testar o nosso componente. 



O ítem 1 já foi visto no artigo anterior ; agora vamos mostrar como criar os procedimentos armazenados 
para adicionar , alterar , excluir e navegar pelos dados da nossa fonte de informação. Para isto vamos 
mostrar como usar o Create Stored Procedure Wizard. 

Usando o Create Stored Procedure Wizard. 

Vamos mostrar como usar esta ferramenta presente no SQL Server 2000 para criar os procedimentos 
armazenados para incluir , atualizar e excluir dados da nossa tabela clientes. 

• Abra o Enterprise Manager do SQL Server 2000  

 

•  

 

Expanda a árvore do Enterprise Manager e selecione o banco 
de dados clientes. A seguir no Menu Tools selecione a opção 
Wizards... 

•  



 

Na janela - Select Wizard - Expanda a opção Database e 
clique duas vezes em - Create Stored Procedure Wizard 
e na janela - Create Stored Procedure Wizard - clique 
em Avançar. 

• Selecione o nome do banco de dados - Clientes - e clique em Avançar > 
• Na janela a seguir selecione os três tipos de procedimentos armazenados e clique em Avançar > 

 

• Os procedimentos serão criados e exibidos como na janela abaixo. Vamos fazer algumas 
alterações. Selecione o primeiro procedimento - Insert_Clientes_1 e clique no botão : Edit... 

 



• Na Janela - Edit Stored Procedure Properties - altere o nome para - sp_incluir_clientes e 
desmarque a coluna ID em Select pois ela será gerada automaticamente. Para encerrar Clique em 
OK. 

 

• Selecione agora o procedimento - update_clientes_1 - e altere o seu nome para - 
sp_atualiza_clientes. Desmarque também a coluna Include in Set Clause para a coluna ID. Para 
encerrar clique em OK. 

 

• Finalmente selecione o procedimento - delete_clientes_1 - e altere o seu nome para - 
sp_excluir_clientes. Clique em OK.  

• Para encerrar clique em Concluir. Pronto!! já temos nossos 3 procedimentos armazenados 
criados. Simples não é mesmo ? 

Abaixo temos a janela exibindo os três procedimenetos criados. Só para matar sua curiosidade vamos 
mostrar a estrutura de um dos procedimentos armazenados.  

Selecione o banco de dados Clientes e a opção Stored Procedures. Clique a seguir na stored procedure - 
sp_atualizar_clientes . O resultado exibido será a janela abaixo com o código do procedimento 
armazenado: 



Os três procedimentos armazenados criados A estrutura do procedimento : 
sp_atualizar_clientes 

Vamos continuar com a terceira parte artigo :  Criando um Componente no Visual Basic...  

 

Trabalhando com aplicações em 3 camadas - Parte III 

 

Se voce chegou até aqui é por que realmente esta interessado. Agora neste terceira parte vamos criar o 
componente no Visual Basic para acessar os dados e realizar as tarefas de incluir , alterar e excluir dados. 
Como estamos tratando a camada de dados vamos encapsular o código em uma DLL. 

Criando um componente no Visual Basic para a camada de dados 

1. Inicie um novo projeto no Visual Basic e selecione na New o projeto - ActiveX DLL 

 

2.  



 

Um novo projeto será aberto como um módulo de classe - Class1 .  

Altere o nome do projeto para Camada3 como exibido ao lado. 

Obs: Para criar uma instância da classe Clientes usaremos o código: 

Set Object = CreateObject("Camada3.Clientes") 

3. É bom salvar o seu projeto agora . Voce pode usar qualquer nome. Vamos salvar com o nome de 
CamadaDados. 

4. Vamos agora codificar a primeira função em nossa DLL . A função é responsável por criar uma 
conexão com a fonte de dados e gerar o recordset desconectado com os dados selecionados. 
(Se você não sabe oque é um recordset desconectado leia o artigo: Trabalhando recordsets sem 
uma base de dados ) 

a. Não esqueça de fazer a referência biblioteca - Microsoft ActiveX Data Object 2.X Library 
b. Na seção General Declarations defina a constante para conexão com o banco de dados Clientes 

e a tabela clientes do SQL Server 2000 criados na parte I deste artigo. 

Option Explicit 
Const Conexao = "Provider=SQLOLEDB.1;Persist Security Info=False;User_ ID=macoratti;Password=123456;Initial 
Catalog=Clientes;Data Source=MACORATI\MACORATTI" 

c. O código da função Acessa_Tabela é o seguinte: 

Public Function Acessa_Tabela (Optional ByVal selecao As Variant, _ 
Optional ByVal DSN As Variant) As ADODB.Recordset 
 
On Error GoTo trata_erro 
 
Dim con As ADODB.Connection 
Dim rst As ADODB.Recordset 
 
If IsMissing(DSN) Then 
    DSN = conexao 
End If 
 
Set con = New ADODB.Connection 
con.Open DSN 
 
Set rst = New ADODB.Recordset 
With rst 
  .CursorLocation = adUseClient 
  .LockType = adLockBatchOptimistic 
  .CursorType = adOpenForwardOnly 
End With 
 
If IsMissing(selecao) Then 
     rst.Open "Select * from Clientes", con 
Else 
     rst.Open selecao, con 
End If 
 
Set rst.ActiveConnection = Nothing 
Set Acessa_Tabela = rst 
Exit Function 
 



trata_erro: 
   Set rst = Nothing 
   Set con = Nothing 
   Err.Raise Err.Number & "  |  " & Err.Source & "  -  " & Err.Description  
End Function 

A função Acessa_tabela trabalha com dois argumentos opcionais passados por valor : A seleção de 
registros e a string para conexão com a base de dados. 

Definimos a constante conexão como : 

Const Conexao = "Provider=SQLOLEDB.1;Persist Security Info=False;User 
ID=macoratti;Password=123456;Initial Catalog=Clientes;Data Source=MACORATI\MACORATTI" 

Esta string foi definida usando os parâmetros para o meu servidor SQL Server e para a minha tabela 
Clientes. 

Para acessar uma base de dados no SQL Server devemos definir o usuário e a senha que vai acessar o 
arquivo e qual banco de dados usar.  Vamos então criar o nosso usuário: Macoratti  ( no seu caso particular 
você define outro nome) e definir o  banco de dados - Clientes - como sendo a fonte de dados que este usuário irá acessar. ( O banco de 
dados Clientes foi criado no SQL Server no artigo - Acessando dados no SQL Server com o VB )  

1. Execute o EnterPrise Manager e abra a raiz hierárquica até o item Logins da pasta Security. 
(Veja abaixo) 

 

2. Selecione o menu Action -> New Login ou clique com o botão direito do mouse  e selecione a 
opção New Login do menu suspenso. A Janela - New Login - (Ver abaixo) deverá aparecer. Nela 
você preenche :  

o o campo Name com o nome do usuário : Macoratti ( no meu caso )  
o o campo Password com a senha para acesso ( minha senha será : 123456 - (para aplicações 

reais nunca use uma senha tão secreta assim...) 
o em Database selecione a tabela Clientes 



 

3. lique em OK e a seguir confirme a Senha. Pronto o usuário Macoratti esta criado com acesso ao 
banco de dados Clientes. Veja abaixo:C 

 

Agora tudo esta pronto: O SQL Server , O banco de dados  e o usuário com a senha cadastrada... 
Continuemos... 

A linha de código : 

If IsMissing(DSN) Then 
  DSN = conexao 
End If 

Verifica se o parâmetro DSN , que é o parâmetro com a string de conexão foi informado. Se nada for 
informado será usado a constante conexao já definida. 

A mesma coisa ocorre com o código a seguir: 

If IsMissing(selecao) Then 
  rst.Open "Select * from Clientes", con 
Else 
  rst.Open selecao, con 
End If  

Verificamos se foi passada uma string para seleção dos registros. Se nada foi informado então 
selecionamos todos os registros do banco de dados ( cuidado com seleções deste tipo...) 



Encapsulando os procedimentos armazenados 

Iremos encapsular o código que utiliza os procedimentos armazenados criados na parte II deste artigo. 
Vamos começar com o mais simples deles : A exclusão de registros feita pela função Exclui_Registro: 

1-) Função para Excluir Registros da base de dados : Exclui_Registro 

Public Function Exclui_Registro (ByVal cliente_ID As Long, _ 
Optional ByVal DSN As Variant) As Boolean 
 
On Error GoTo trata_erro 
 
    Dim cmd As ADODB.Command 
    Dim parametro As ADODB.Parameter 
     
    Exclui_Registro = False 
     
    If IsMissing(DSN) Then 
        DSN = Conexao 
    End If 
     
    Set cmd = New ADODB.Command 
    With cmd 
         .ActiveConnection = DSN 
         .CommandType = adCmdStoredProc 
         .CommandText = "sp_excluir_clientes"  
    End With 
     
    Set parametro = cmd.CreateParameter("@ID", adIntege r, adParamInput, 4, cliente_ID)  
    cmd.Parameters.Append parametro 
     
    cmd.Execute  
     
    MsgBox " Registro excluido com sucesso ! " 
     
    Exclui_Registro = True 
    Exit Function 
     
trata_erro: 
    Set cmd = Nothing 
    Err.Raise Err.Number & "  |  " & Err.Source & "   -  " & Err.Description 
End Function 

A função Exclui_Registro utiliza o objeto command para executar o procedimento armazenado - 
sp_excluir_clientes ; esta é uma das melhores formas de executar um procedimento armazenado. Usamos 
dois parâmetro de entrada : O código de identificação do Cliente e a string para a conexão. 

Os parâmetros de entrada são definidos usando o objeto command e sua coleção Parameters. Uma 
sequência para usar o objeto commando seria: 

1. Criar o objeto Command  
2. Definir o nome do procedimento armazenado 
3. Especificar o tipo do comando que vamos usar 

É claro que para funcionar o objeto command precisa de uma conexão atribuída para realizar o acesso ao 
banco de dados. Fazemos isto usando a instrução : cmd.ActiveConnection = DSN 

Para passar os parâmetros de entrada atribuímos objetos Parameters ao objeto Command. Fazemos isto 
em duas etapas :  

1. Criamos o objeto Parameter 
2. Anexamos o objeto Parameter a coleção Parameters 

assim : 



Set parametro = cmd.CreateParameter("@ID", adInteger, adParamInput, 4, cliente_ID) 
cmd.Parameters.Append parametro 

A sintaxe é a seguinte: 

Set ObjParam = objCmd.CreateParameter(Name, Type, Direction , Size , Value ) 

2-) Função para Atualizar Registros da base de dados : Altera_Registro 

Vamos atualizar os registros usando a instrução UPDATE . A seguir o código da função Altera_Registro 
: 

Public Function Altera_Registro(ByVal nID As Long, _ 
                                ByVal strNome As St ring, _ 
                                ByVal strEndereco A s String, _ 
                                ByVal dNascimento A s Date, _ 
                                ByVal strObservacao  As String, _ 
                                Optional ByVal DSN As Variant) As Boolean 
                                 
On Error GoTo trata_erro 
 
Dim con As ADODB.Connection 
Dim cmd As ADODB.Command 
 
Altera_Registro = False 
 
If IsMissing(DSN) Then 
     DSN = Conexao 
End If 
 
Set con = New ADODB.Connection 
con.ConnectionString = DSN 
con.Open 
 
Set cmd = New ADODB.Command 
Set cmd.ActiveConnection = con 
cmd.CommandType = adCmdStoredProc 
cmd.CommandText = "sp_atualizar_clientes"  
 
cmd.Parameters.Append cmd.CreateParameter("@ID_1", adInteger, adParamInput, 4, nID) 
cmd.Parameters.Append cmd.CreateParameter("@Nome_2" , adVarChar, adParamInput, 50, strNome) 
cmd.Parameters.Append cmd.CreateParameter("@Enderec o_3", adVarChar, adParamInput, 50, strEndereco) 
cmd.Parameters.Append cmd.CreateParameter("@Nascime nto_4", adDate, adParamInput, , dNascimento) 
cmd.Parameters.Append cmd.CreateParameter("@Observa cao_4", adVarChar, adParamInput, 100, strObservacao )  

                                 
cmd.Execute 
Altera_Registro = True 
MsgBox "Alteração realizada com sucesso !" 
 
Exit Function 
trata_erro: 
    Set cmd = Nothing 
    Err.Raise Err.Number & "  |  " & Err.Source & "   -  " & Err.Description 
End Function 

- A função Altera_Registro recebe o seguintes parâmetros de entrada: 

• O código de identificação do cliente - ID 
• O nome do Cliente 
• O Endereço do Cliente 
• A data de nascimento do cliente 
• As observações  
• A string para conexão com o banco de dados ( Opcional) 

Os parâmetros são então atribuidos ao objeto Command via objetos Parameters : 



cmd.Parameters.Append cmd.CreateParameter("@ID_1", adInteger, adParamInput, 4, nID) 
cmd.Parameters.Append cmd.CreateParameter("@Nome_2", adVarChar, adParamInput, 50, strNome) 
cmd.Parameters.Append cmd.CreateParameter("@Endereco_3", adVarChar, adParamInput, 50, strEndereco) 
cmd.Parameters.Append cmd.CreateParameter("@Nascimento_4", adDate, adParamInput, , dNascimento) 
cmd.Parameters.Append cmd.CreateParameter("@Observacao_4", adVarChar, adParamInput, 100, strObservacao) 

Note que é informado: o nome do parâmetro o tipo , a direção , o tamanho e o valor. 

A Alteração é efetivada com o comando execute do objeto command: cmd.Execute 

3-) Função para Incluir Registros da base de dados : Inclui_Registro 

Para encerrar as funções usadas em nosso componente , vamos encapsular o código relativo a stored 
procedure : sp_incluir_clientes . O código é o seguinte: 

Public Function Inclui_Registro (ByVal strNome As String, _ 
                                ByVal strEndereco A s String, _ 
                                ByVal dNascimento A s Date, _ 
                                ByVal strObservacao  As String, _ 
                                Optional ByVal DSN As Variant) As Boolean 
 
On Error GoTo trata_erro 
 
Dim con As ADODB.Connection 
Dim cmd As ADODB.Command 
 
Inclui_Registro = False 
 
If IsMissing(DSN) Then 
     DSN = Conexao 
End If 
 
Set con = New ADODB.Connection 
con.ConnectionString = DSN 
con.Open 
 
Set cmd = New ADODB.Command 
Set cmd.ActiveConnection = con 
 
cmd.CommandType = adCmdStoredProc 
cmd.CommandText = "sp_incluir_clientes"  
cmd.Parameters.Refresh 
 
With cmd.Parameters 
  .Item(1).Value = strNome 
  .Item(2).Value = strEndereco 
  .Item(3).Value = dNascimento 
  .Item(4).Value = strObservacao 
End With 
 
cmd.Execute 
MsgBox "Registro incluido com sucesso !" 
Exit Function 
 
trata_erro: 
  Set cmd = Nothing 
  Err.Raise Err.Number & " | " & Err.Source & " - "  & Err.Description   
End Function 

- A função Inclui_Registro recebe o seguintes parâmetros de entrada: 

• O nome do Cliente 
• O Endereço do Cliente 
• A data de nascimento do cliente 
• As observações  
• A string para conexão com o banco de dados ( Opcional) 



E o código do cliente ? Ora , se não falei antes vou falar agora . O campo ID da tabela Clientes deve ser 
definido como do tipo Identity sendo que a Identity seed deve ser igual a 1 e o incremento (Identity 
increment) também é igual a 1. Em outras palavras , este campo é um campo autonumeração que será 
incrementado de uma unidade quando da inclusão de um novo registro. Veja abaixo: 

 

Obs: Uma coluna Autonumeração é referida como uma coluna Identity no SQL Server 2000 

Portanto nao vamos incluir um código para o cliente , o banco de dados irá realizar esta tarefa. 

Os valores são incluidos no objeto Commando assim: 

With cmd.Parameters 
  .Item(1).Value = strNome 
  .Item(2).Value = strEndereco 
  .Item(3).Value = dNascimento 
  .Item(4).Value = strObservacao 
End With 

Note que como item(0).value refere-se ao camo ID ( codigo do cliente ) , e, este campo é do tipo Identity 
, começamos a partir do item(1).value ate item(4).value. 

Pronto ! já codificamos as 4 funções que compôem a nossa camada de dados e farão todo o tratamento 
dos dados : 

1. Acessa_Tabela 
2. Exclui_Registro 
3. Altera_Registro 
4. Inclui_Registro 



Vamos compilar o nosso projeto e gerar o arquivo DLL. Selecione no menu File 
a opção Make CamadaDados.dll.  

Se não houver nenhum erro de sintaxe a compilação irá ocorrer com sucesso e 
o arquivo camadaDados.dll será gerado e estará pronto para ser usado no seu 
projeto Visual Basic 

 

Na última parte deste artigo (já estava na hora) vamos mostrar como usar o nosso componente. Veja a 
continuação em : Usando o componente da camada de dados 

 

Trabalhando com aplicações em 3 camadas - Parte IV 

 

Para encerrar este artigo vamos mostrar como usar o componente criado no artigo anterior. Criamos o 
componente ActiveX como uma DLL com as seguintes funções : 

•  Acessa_Tabela  
•  Exclui_Registro  
•  Altera_Registro  
•  Inclui_Registro  

Todas as funções possuem o atributo Public e podem ser acessadas de fora do objeto. 

Para testar o componente vamos usar o Visual Basic , carregar o projeto usado para criar a DLL e usar um 
segundo projeto que irá realizar os testes com o componente. Com isto estamos formando um grupo de 
projetos com o projeto ActiveX.  

Se você ainda não compilou o projeto CamadaDados e gerou a dll é hora de fazer isto agora. 

1.- Abra no Visual Basic o projeto CamadaDados e no menu File selecione : Add Project 

2.- Selecione um projeto padrão Standard EXE e salve-o com o nome de Camada3_teste. 

3.- Salve o projeto e forneça o nome de - Camada3_Grupo para o grupo de projetos. 

4.- Clique com o botão direito sobre o projeto Camada3_Teste e clique em Set As Start Up para definir 
qual formulário será executado quando o projeto for executado. veja abaixo o grupo de projeto projeto: 



 

Aqui temos:  

• o grupo de projeto : Camada3_Grupo 
• O projeto Camada3_Teste com o formulário : frmteste.frm 

para testar o componente 
• O Componente :CamadaDados 
• A classe camada3 que será instanciada  

5.-Agora você vai definir uma referência ao objeto CamadaDados que você criou. No menu Project 
selecione References... e selecione o objeto CamadaDados como mostrado abaixo. 

 

CamadaDados é o nosso componente criado na parte 
III deste artigo. 

Você tem que selecionar o componente para poder 
usar as funções criadas no arquivo ActiveX 

6.-No formulário frmteste insira quatro botões de comando - command1 , command2, command3 e 
command4 como no layout abaixo: 

 
formulário para testar o componente 

7- O código para cada botão de comando é o seguinte: 

Private Sub Command1_Click() 
Dim objeto_Teste As New Camada3 
 
objeto_Teste.Acessa_Tabela ("Select * from Clientes") 
 
End Sub 

 

Private Sub Command2_Click() 
Dim objeto_Teste As New Camada3 
Dim resultado As Boolean 
 
objeto_Teste.Exclui_Registro (2) 



 
 
End Sub 

 

Private Sub Command3_Click() 
Dim objeto_Teste As New Camada3 
Dim resultado As Boolean 
 
resultado = objeto_Teste.Altera_Registro(1, "Teste de atualizacao", "Rua 25 Janeiro 100", "12/05/1945", 
"Teste de observacao...") 
 
End Sub 

 

Private Sub Command4_Click() 
Dim objeto_Teste As New Camada3 
Dim resultado As Boolean 
 
resultado = objeto_Teste.Inclui_Registro("Teste de inclusao", "Rua 25 Janeiro 500", "12/05/1957", "Teste 
de inclusao...") 
 
End Sub 

O código de cada botão de comando é muito simples. Nele criamos uma instância da classe Camada3 e o 
objeto : objeto_Teste: 

Dim objeto_Teste As New Camada3 
 
A seguir ao utilizar o objeto criado veremos que as funções da classe serão exposta na janela de código: 

 

Agora é só usar os parâmetros adequados de acordo com a definição de cada função. As funções serão 
chamadas e usarão os Procedimentos Armazenados criados na parte II deste artigo. 

Com isto terminamos a nosso artigo sobre 3 camadas usando o Visual Basic. É um exemplo simples , 
mesmo por que , esse tema renderia material para escrever um livro e ainda não esgotariamos o assunto. 

O importante é você perceber que criamos o código para nossa camada de dados todo encapsulado em 
um componente ActiveX: o que facilita a sua utilização e manutenção. 

Agora o resto é com você...  

 
 


